Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 19248, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37935809

ABSTRACT

This study aims to prepare Ag-CuO nanoparticles and assess their efficiency in protecting the copper substrate. The prepared Ag-CuO nanoparticle was characterized using, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope/energy-dispersive X-ray (SEM/EDX), and transmission electron microscope (TEM). The anticorrosion performance of the epoxy coatings containing various weight percentages of Ag-CuO nanoparticles was evaluated in 3.5 wt% NaCl solution using potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS) techniques. The results showed that corrosion potential shifted from - 0.211 V for uncoated copper to - 0.120 V for 5.0 wt% Ag-CuO/epoxy hybrid nanocomposite. Electrochemical measurements indicated that the coating 5.0 wt% coating exhibited excellent inhibiting properties with an efficiency of 99.9%. Wettability and mechanical properties were measured for both uncoated and coated copper substrates. The contact angle for 5.0 wt% coating is equal to 104° enhancing the hydrophobic character of the surface. The study clearly establishes that the hybrid composite has a significant potential for protecting the copper substrate.

2.
Environ Sci Technol ; 57(43): 16707-16717, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37846972

ABSTRACT

Ultraviolet (UV) disinfection is commonly applied in the treatment of drinking water and wastewater. The performance of UV disinfection systems is governed by the UV dose distribution delivered to the fluid, which is an intrinsic characteristic of the reactor under a given operating condition. Current design and validation approaches are based on empirical methods that are expensive to apply and provide limited information about the UV photoreactor behavior. To address this issue, a dose distribution scaling method was developed based on dimensional analysis (i.e., application of the Buckingham-π theorem). Three dimensionless groups representing UV dose, reactor geometry, and UV absorption behavior were defined. Using these groups, the approach was applied for the analysis of 15 operating conditions, defined by process variables of volumetric flow rate, UV transmittance, and lamp power. The approach was demonstrated to allow scaling of the dose distribution with these critical, dimensionless variables and yielded close agreement between predictions of disinfection efficacy against MS2 and E. coli based on the scaling approach with conventional CFD-E' modeling results. The approach thus provides a low-cost, rapid method for predicting the performance of UV disinfection systems across a wide range of operating conditions and against essentially any microbial challenge agent.


Subject(s)
Escherichia coli , Water Purification , Ultraviolet Rays , Disinfection/methods , Wastewater , Water Purification/methods
3.
Environ Sci Technol ; 52(8): 4738-4745, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29596750

ABSTRACT

The performance of photochemical reactors is governed by the spatial distribution of radiant energy within the irradiated region of the reactor. Ray tracing has been widely used for simulation of lighting systems. The central hypothesis of this work was that ray tracing can provide accurate simulations of fluence rate fields within ultraviolet (UV) photoreactors by accounting for the physical and optical phenomena that will govern fluence rate fields in UV photoreactors. Ray tracing works by simulating the behavior of a large population of rays emanating from a radiation source to describe the spatial distribution of radiant energy (i.e., fluence rate) within a system. In this study, fluence rate calculations were performed using commercial ray tracing software for three basic UV reactors, each with a single low-pressure Hg lamp. Fluence rate calculations in the ray tracing program were based on the formal definition of fluence rate, calculated as the incident radiant power from all directions on a small spherical receptor, divided by the cross-sectional area of that sphere. The results of this study demonstrate that ray tracing can provide predictions of fluence rate in UV radiative systems that are close to experimental measurements and the predictions of other numerical methods.


Subject(s)
Lighting , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...