Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Alzheimers Res Ther ; 16(1): 71, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38576025

ABSTRACT

BACKGROUND: The aggregation and spread of misfolded amyloid structured proteins, such as tau and α-synuclein, are key pathological features associated with neurodegenerative disorders, including Alzheimer's and Parkinson's disease. These proteins possess a prion-like property, enabling their transmission from cell to cell leading to propagation throughout the central and peripheral nervous systems. While the mechanisms underlying their intracellular spread are still being elucidated, targeting the extracellular space has emerged as a potential therapeutic approach. The glymphatic system, a brain-wide pathway responsible for clearing extracellular metabolic waste from the central nervous system, has gained attention as a promising target for removing these toxic proteins. METHODS: In this study, we investigated the impact of long-term modulation of glymphatic function on tau aggregation and spread by chronically treating a mouse model of tau propagation with a pharmacological inhibitor of AQP4, TGN-020. Thy1-hTau.P301S mice were intracerebrally inoculated with tau into the hippocampus and overlying cortex, and subsequently treated with TGN-020 (3 doses/week, 50 mg/kg TGN-020, i.p.) for 10-weeks. During this time, animal memory was studied using cognitive behavioural tasks, and structural MR images were acquired of the brain in vivo prior to brain extraction for immunohistochemical characterisation. RESULTS: Our findings demonstrate increased tau aggregation in the brain and transhemispheric propagation in the hippocampus following the inhibition of glymphatic clearance. Moreover, disruption of the glymphatic system aggravated recognition memory in tau inoculated mice and exacerbated regional changes in brain volume detected in the model. When initiation of drug treatment was delayed for several weeks post-inoculation, the alterations were attenuated. CONCLUSIONS: These results indicate that by modulating AQP4 function and, consequently, glymphatic clearance, it is possible to modify the propagation and pathological impact of tau in the brain, particularly during the initial stages of the disease. These findings highlight the critical role of the glymphatic system in preserving healthy brain homeostasis and offer valuable insights into the therapeutic implications of targeting this system for managing neurodegenerative diseases characterized by protein aggregation and spread.


Subject(s)
Alzheimer Disease , Glymphatic System , Niacinamide/analogs & derivatives , Thiadiazoles , Mice , Animals , Alzheimer Disease/pathology , Brain/metabolism , Glymphatic System/metabolism , tau Proteins/metabolism
2.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Article in English | MEDLINE | ID: mdl-34893539

ABSTRACT

There are currently no treatments that can slow the progression of neurodegenerative diseases, such as Alzheimer's disease (AD). There is, however, a growing body of evidence that activation of the M1 muscarinic acetylcholine receptor (M1-receptor) can not only restore memory loss in AD patients but in preclinical animal models can also slow neurodegenerative disease progression. The generation of an effective medicine targeting the M1-receptor has however been severely hampered by associated cholinergic adverse responses. By using genetically engineered mouse models that express a G protein-biased M1-receptor, we recently established that M1-receptor mediated adverse responses can be minimized by ensuring activating ligands maintain receptor phosphorylation/arrestin-dependent signaling. Here, we use these same genetic models in concert with murine prion disease, a terminal neurodegenerative disease showing key hallmarks of AD, to establish that phosphorylation/arrestin-dependent signaling delivers neuroprotection that both extends normal animal behavior and prolongs the life span of prion-diseased mice. Our data point to an important neuroprotective property inherent to the M1-receptor and indicate that next generation M1-receptor ligands designed to drive receptor phosphorylation/arrestin-dependent signaling would potentially show low adverse responses while delivering neuroprotection that will slow disease progression.


Subject(s)
Prion Diseases/metabolism , Prion Diseases/pathology , Receptor, Muscarinic M1/metabolism , Animals , Cells, Cultured , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Gene Expression Regulation/physiology , Mice , Mice, Knockout , Neurons/metabolism , Prion Diseases/genetics , Receptor, Muscarinic M1/genetics , Signal Transduction
3.
Cell Rep ; 37(7): 110022, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34788620

ABSTRACT

Alternative splicing is a post-transcriptional regulatory mechanism producing distinct mRNA molecules from a single pre-mRNA with a prominent role in the development and function of the central nervous system. We used long-read isoform sequencing to generate full-length transcript sequences in the human and mouse cortex. We identify novel transcripts not present in existing genome annotations, including transcripts mapping to putative novel (unannotated) genes and fusion transcripts incorporating exons from multiple genes. Global patterns of transcript diversity are similar between human and mouse cortex, although certain genes are characterized by striking differences between species. We also identify developmental changes in alternative splicing, with differential transcript usage between human fetal and adult cortex. Our data confirm the importance of alternative splicing in the cortex, dramatically increasing transcriptional diversity and representing an important mechanism underpinning gene regulation in the brain. We provide transcript-level data for human and mouse cortex as a resource to the scientific community.


Subject(s)
Cerebral Cortex/metabolism , Protein Isoforms/genetics , Transcriptome/genetics , Alternative Splicing/genetics , Animals , Brain/metabolism , Cerebral Cortex/physiology , Exons/genetics , Gene Expression/genetics , Gene Expression Profiling/methods , Genome , High-Throughput Nucleotide Sequencing/methods , Humans , Mice , Protein Isoforms/metabolism , RNA Precursors/genetics , RNA Splice Sites/genetics , RNA, Messenger/genetics , Sequence Analysis, RNA/methods
4.
Sci Rep ; 11(1): 10309, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33986302

ABSTRACT

Intracellular tau inclusions are a pathological hallmark of Alzheimer's disease, progressive supranuclear palsy, corticobasal degeneration and other sporadic neurodegenerative tauopathies. Recent in vitro and in vivo studies have shown that tau aggregates may spread to neighbouring cells and functionally connected brain regions, where they can seed further tau aggregation. This process is referred to as tau propagation. Here we describe an ex vivo system using organotypic hippocampal slice cultures (OHCs) which recapitulates aspects of this phenomenon. OHCs are explants of hippocampal tissue which may be maintained in culture for months. They maintain their synaptic connections and multicellular 3D architecture whilst also permitting direct control of the environment and direct access for various analysis types. We inoculated OHCs prepared from P301S mouse pups with brain homogenate from terminally ill P301S mice and then examined the slices for viability and the production and localization of insoluble phosphorylated tau. We show that following seeding, phosphorylated insoluble tau accumulate in a time and concentration dependent manner within OHCs. Furthermore, we show the ability of the conformation dependent anti-tau antibody, MC1, to compromise tau accrual in OHCs, thus showcasing the potential of this therapeutic approach and the utility of OHCs as an ex vivo model system for assessing such therapeutics.


Subject(s)
Hippocampus/pathology , Tauopathies/pathology , Alzheimer Disease/pathology , Animals , Hippocampus/metabolism , In Vitro Techniques , Mice , Mice, Transgenic , Phosphorylation
5.
Brain ; 143(8): 2576-2593, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32705145

ABSTRACT

The glymphatic system, that is aquaporin 4 (AQP4) facilitated exchange of CSF with interstitial fluid (ISF), may provide a clearance pathway for protein species such as amyloid-ß and tau, which accumulate in the brain in Alzheimer's disease. Further, tau protein transference via the extracellular space, the compartment that is cleared by the glymphatic pathway, allows for its neuron-to-neuron propagation, and the regional progression of tauopathy in the disorder. The glymphatic system therefore represents an exciting new target for Alzheimer's disease. Here we aim to understand the involvement of glymphatic CSF-ISF exchange in tau pathology. First, we demonstrate impaired CSF-ISF exchange and AQP4 polarization in a mouse model of tauopathy, suggesting that this clearance pathway may have the potential to exacerbate or even induce pathogenic accumulation of tau. Subsequently, we establish the central role of AQP4 in the glymphatic clearance of tau from the brain; showing marked impaired glymphatic CSF-ISF exchange and tau protein clearance using the novel AQP4 inhibitor, TGN-020. As such, we show that this system presents as a novel druggable target for the treatment of Alzheimer's disease, and possibly other neurodegenerative diseases alike.


Subject(s)
Alzheimer Disease/metabolism , Aquaporin 4/metabolism , Brain/metabolism , Glymphatic System/metabolism , tau Proteins/metabolism , Alzheimer Disease/pathology , Animals , Brain/pathology , Cerebrospinal Fluid/metabolism , Disease Models, Animal , Extracellular Fluid/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic
6.
Cell Rep ; 30(6): 2040-2054.e5, 2020 02 11.
Article in English | MEDLINE | ID: mdl-32049030

ABSTRACT

Alzheimer's disease (AD) is associated with the intracellular aggregation of hyperphosphorylated tau and the accumulation of ß-amyloid in the neocortex. We use transgenic mice harboring human tau (rTg4510) and amyloid precursor protein (J20) mutations to investigate transcriptional changes associated with the progression of tau and amyloid pathology. rTg4510 mice are characterized by widespread transcriptional differences in the entorhinal cortex with changes paralleling neuropathological burden across multiple brain regions. Differentially expressed transcripts overlap with genes identified in genetic studies of familial and sporadic AD. Systems-level analyses identify discrete co-expression networks associated with the progressive accumulation of tau that are enriched for genes and pathways previously implicated in AD pathology and overlap with co-expression networks identified in human AD cortex. Our data provide further evidence for an immune-response component in the accumulation of tau and reveal molecular pathways associated with the progression of AD neuropathology.


Subject(s)
Alzheimer Disease/genetics , Amyloid beta-Peptides/adverse effects , tau Proteins/adverse effects , Animals , Disease Models, Animal , Disease Progression , Humans , Mice , Mice, Transgenic
7.
Sci Rep ; 9(1): 14837, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31619689

ABSTRACT

Alzheimer's disease (AD)-associated synaptic dysfunction drives the progression of pathology from its earliest stages. Amyloid ß (Aß) species, both soluble and in plaque deposits, have been causally related to the progressive, structural and functional impairments observed in AD. It is, however, still unclear how Aß plaques develop over time and how they progressively affect local synapse density and turnover. Here we observed, in a mouse model of AD, that Aß plaques grow faster in the earlier stages of the disease and if their initial area is >500 µm2; this may be due to deposition occurring in the outer regions of the plaque, the plaque cloud. In addition, synaptic turnover is higher in the presence of amyloid pathology and this is paralleled by a reduction in pre- but not post-synaptic densities. Plaque proximity does not appear to have an impact on synaptic dynamics. These observations indicate an imbalance in the response of the pre- and post-synaptic terminals and that therapeutics, alongside targeting the underlying pathology, need to address changes in synapse dynamics.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Plaque, Amyloid/pathology , Post-Synaptic Density/pathology , Presynaptic Terminals/pathology , Amyloid beta-Protein Precursor/genetics , Animals , Disease Models, Animal , Disease Progression , Female , Humans , Mice , Mice, Transgenic , Mutation
8.
Acta Neuropathol Commun ; 7(1): 127, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31383030

ABSTRACT

In the original publication of this article [1], the funding acknowledgement for grant "Alzheimer Society Research Program (ASRP) from the Alzheimer Society of Canada" was missing.

9.
Acta Neuropathol Commun ; 7(1): 4, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30616676

ABSTRACT

Visual impairments, such as difficulties in reading and finding objects, perceiving depth and structure from motion, and impaired stereopsis, have been reported in tauopathy disorders, such as frontotemporal dementia (FTD). These impairments however have been previously attributed to cortical pathologies rather than changes in the neurosensory retina or the optic nerve. Here, we examined tau pathology in the neurosensory retina of the rTg(tauP301L)4510 mouse model of FTD. Optic nerve pathology in mice was also assessed using MRI, and corresponding measurements taken in a cohort of five FTD sufferers and five healthy controls. rTg(tauP301L)4510 mice were imaged (T2-weighted MRI) prior to being terminally anesthetized and eyes and brains removed for immunohistochemical and histological analysis. Central and peripheral retinal labelling of tau and phosphorylated tau (pTau) was quantified and retinal layer thicknesses and cell numbers assessed. MR volumetric changes of specific brain regions and the optic nerve were compared to tau accumulation and cell loss in the visual pathway. In addition, the optic nerves of a cohort of healthy controls and behavioural variant FTD patients, were segmented from T1- and T2-weighted images for volumetric study. Accumulation of tau and pTau were observed in both the central and peripheral retinal ganglion cell (RGC), inner plexiform and inner nuclear layers of the neurosensory retina of rTg(tauP301L)4510 mice. This pathology was associated with reduced nuclear density (- 24.9 ± 3.4%) of the central RGC layer, and a reduced volume (- 19.3 ± 4.6%) and elevated T2 signal (+ 27.1 ± 1.8%) in the optic nerve of the transgenic mice. Significant atrophy of the cortex (containing the visual cortex) was observed but not in other area associated with visual processing, e.g. the lateral geniculate nucleus or superior colliculus. Atrophic changes in optic nerve volume were similarly observed in FTD patients (- 36.6 ± 2.6%). The association between tau-induced changes in the neurosensory retina and reduced optic nerve volume in mice, combined with the observation of optic nerve atrophy in clinical FTD suggests that ophthalmic tau pathology may also exist in the eyes of FTD patients. If tau pathology and neurodegeneration in the retina were to reflect the degree of cortical tau burden, then cost-effective and non-invasive imaging of the neurosensory retina could provide valuable biomarkers in tauopathy. Further work should aim to validate whether these observations are fully translatable to a clinical scenario, which would recommend follow-up retinal and optic nerve examination in FTD.


Subject(s)
Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Optic Nerve/pathology , Retinal Degeneration/genetics , Retinal Degeneration/pathology , tau Proteins/genetics , Animals , Disease Models, Animal , Female , Frontotemporal Dementia/complications , Humans , Male , Mice, Transgenic , Middle Aged , Retinal Degeneration/complications , Retinal Ganglion Cells/pathology
10.
Mol Neurodegener ; 13(1): 65, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30558641

ABSTRACT

BACKGROUND: Activation of microglia, the resident immune cells of the central nervous system, is a prominent pathological hallmark of Alzheimer's disease (AD). However, the gene expression changes underlying microglia activation in response to tau pathology remain elusive. Furthermore, it is not clear how murine gene expression changes relate to human gene expression networks. METHODS: Microglia cells were isolated from rTg4510 tau transgenic mice and gene expression was profiled using RNA sequencing. Four age groups of mice (2-, 4-, 6-, and 8-months) were analyzed to capture longitudinal gene expression changes that correspond to varying levels of pathology, from minimal tau accumulation to massive neuronal loss. Statistical and system biology approaches were used to analyze the genes and pathways that underlie microglia activation. Differentially expressed genes were compared to human brain co-expression networks. RESULTS: Statistical analysis of RNAseq data indicated that more than 4000 genes were differentially expressed in rTg4510 microglia compared to wild type microglia, with the majority of gene expression changes occurring between 2- and 4-months of age. These genes belong to four major clusters based on their temporal expression pattern. Genes involved in innate immunity were continuously up-regulated, whereas genes involved in the glutamatergic synapse were down-regulated. Up-regulated innate inflammatory pathways included NF-κB signaling, cytokine-cytokine receptor interaction, lysosome, oxidative phosphorylation, and phagosome. NF-κB and cytokine signaling were among the earliest pathways activated, likely driven by the RELA, STAT1 and STAT6 transcription factors. The expression of many AD associated genes such as APOE and TREM2 was also altered in rTg4510 microglia cells. Differentially expressed genes in rTg4510 microglia were enriched in human neurodegenerative disease associated pathways, including Alzheimer's, Parkinson's, and Huntington's diseases, and highly overlapped with the microglia and endothelial modules of human brain transcriptional co-expression networks. CONCLUSION: This study revealed temporal transcriptome alterations in microglia cells in response to pathological tau perturbation and provides insight into the molecular changes underlying microglia activation during tau mediated neurodegeneration.


Subject(s)
Alzheimer Disease/genetics , Gene Regulatory Networks/genetics , Genetic Predisposition to Disease , Microglia/metabolism , tau Proteins/genetics , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Gene Expression/physiology , Mice, Transgenic , tau Proteins/metabolism
11.
Front Neurosci ; 11: 599, 2017.
Article in English | MEDLINE | ID: mdl-29163005

ABSTRACT

Background: Non-invasive characterization of the pathological features of Alzheimer's disease (AD) could enhance patient management and the development of therapeutic strategies. Magnetic resonance imaging texture analysis (MRTA) has been used previously to extract texture descriptors from structural clinical scans in AD to determine cerebral tissue heterogeneity. In this study, we examined the potential of MRTA to specifically identify tau pathology in an AD mouse model and compared the MRTA metrics to histological measures of tau burden. Methods: MRTA was applied to T2 weighted high-resolution MR images of nine 8.5-month-old rTg4510 tau pathology (TG) mice and 16 litter matched wild-type (WT) mice. MRTA comprised of the filtration-histogram technique, where the filtration step extracted and enhanced features of different sizes (fine, medium, and coarse texture scales), followed by quantification of texture using histogram analysis (mean gray level intensity, mean intensity, entropy, uniformity, skewness, standard-deviation, and kurtosis). MRTA was applied to manually segmented regions of interest (ROI) drawn within the cortex, hippocampus, and thalamus regions and the level of tau burden was assessed in equivalent regions using histology. Results: Texture parameters were markedly different between WT and TG in the cortex (E, p < 0.01, K, p < 0.01), the hippocampus (K, p < 0.05) and in the thalamus (K, p < 0.01). In addition, we observed significant correlations between histological measurements of tau burden and kurtosis in the cortex, hippocampus and thalamus. Conclusions: MRTA successfully differentiated WT and TG in brain regions with varying degrees of tau pathology (cortex, hippocampus, and thalamus) based on T2 weighted MR images. Furthermore, the kurtosis measurement correlated with histological measures of tau burden. This initial study indicates that MRTA may have a role in the early diagnosis of AD and the assessment of tau pathology using routinely acquired structural MR images.

12.
Alzheimers Res Ther ; 9(1): 77, 2017 Sep 20.
Article in English | MEDLINE | ID: mdl-28931441

ABSTRACT

BACKGROUND: The choice and appropriate use of animal models in drug discovery for Alzheimer's disease (AD) is pivotal to successful clinical translation of novel therapeutics, yet true alignment of research is challenging. Current models do not fully recapitulate the human disease, and even exhibit various degrees of regional pathological burden and diverse functional alterations. Given this, relevant pathological and functional endpoints must be determined on a model-by-model basis. The present work explores the rTg4510 mouse model of tauopathy as a case study to define best practices for the selection and validation of cognitive and functional endpoints for the purposes of pre-clinical AD drug discovery. METHODS: Male rTg4510 mice were first tested at an advanced age, 12 months, in multiple behavioural assays (step 1). Severe tau pathology and neurodegeneration was associated with profound locomotor hyperactivity and spatial memory deficits. Four of these assays were then selected for longitudinal assessment, from 4 to 12 months, to investigate whether behavioural performance changes as a function of accumulation of tau pathology (step 2). Experimental suppression of tau pathology-via doxycycline administration-was also investigated for its effect on functional performance. RESULTS: Progressive behavioural changes were detected where locomotor activity and rewarded alternation were found to most closely correlate with tau burden and neurodegeneration. Doxycycline initiated at 4 months led to a 50% suppression of transgene expression, which was sufficient to prevent subsequent increases in tau pathology and arrest related functional decline. CONCLUSIONS: This two-step approach demonstrates the importance of selecting assays most sensitive to the phenotype of the model. A robust relationship was observed between pathological progression, development of phenotype, and their experimental manipulation-three crucial factors for assessing the translational relevance of future pre-clinical findings.


Subject(s)
Cognition Disorders/etiology , Disease Progression , Mental Disorders/etiology , Psychomotor Performance/physiology , Tauopathies/pathology , Tauopathies/physiopathology , Age Factors , Animals , Brain/metabolism , Brain/pathology , Cohort Studies , Discrimination, Psychological/drug effects , Discrimination, Psychological/physiology , Disease Models, Animal , Doxycycline/pharmacology , Male , Memory, Short-Term/physiology , Mental Disorders/drug therapy , Mice , Mice, Transgenic , Motor Activity/drug effects , Motor Activity/genetics , Mutation/genetics , Psychomotor Performance/drug effects , Tauopathies/genetics , tau Proteins/genetics
13.
Front Neuroinform ; 11: 20, 2017.
Article in English | MEDLINE | ID: mdl-28408879

ABSTRACT

With increasingly large numbers of mouse models of human disease dedicated to MRI studies, compromises between in vivo and ex vivo MRI must be fully understood in order to inform the choice of imaging methodology. We investigate the application of high resolution in vivo and ex vivo MRI, in combination with tensor-based morphometry (TBM), to uncover morphological differences in the rTg4510 mouse model of tauopathy. The rTg4510 mouse also offers a novel paradigm by which the overexpression of mutant tau can be regulated by the administration of doxycycline, providing us with a platform on which to investigate more subtle alterations in morphology with morphometry. Both in vivo and ex vivo MRI allowed the detection of widespread bilateral patterns of atrophy in the rTg4510 mouse brain relative to wild-type controls. Regions of volume loss aligned with neuronal loss and pathological tau accumulation demonstrated by immunohistochemistry. When we sought to investigate more subtle structural alterations in the rTg4510 mice relative to a subset of doxycycline-treated rTg4510 mice, ex vivo imaging enabled the detection of more regions of morphological brain changes. The disadvantages of ex vivo MRI may however mitigate this increase in sensitivity: we observed a 10% global shrinkage in brain volume of the post-mortem tissues due to formalin fixation, which was most notable in the cerebellum and olfactory bulbs. However, many central brain regions were not adversely affected by the fixation protocol, perhaps due to our "in-skull" preparation. The disparity between our TBM findings from in vivo and ex vivo MRI underlines the importance of appropriate study design, given the trade-off between these two imaging approaches. We support the utility of in vivo MRI for morphological phenotyping of mouse models of disease; however, for subtler phenotypes, ex vivo offers enhanced sensitivity to discrete morphological changes.

14.
Cell Rep ; 18(13): 3063-3068, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28355559

ABSTRACT

Synapse loss is a key feature of dementia, but it is unclear whether synaptic dysfunction precedes degenerative phases of the disease. Here, we show that even before any decrease in synapse density, there is abnormal turnover of cortical axonal boutons and dendritic spines in a mouse model of tauopathy-associated dementia. Strikingly, tauopathy drives a mismatch in synapse turnover; postsynaptic spines turn over more rapidly, whereas presynaptic boutons are stabilized. This imbalance between pre- and post-synaptic stability coincides with reduced synaptically driven neuronal activity in pre-degenerative stages of the disease.


Subject(s)
Synapses/pathology , Tauopathies/pathology , Animals , Axons/metabolism , Cerebral Cortex/pathology , Dendritic Spines/metabolism , Male , Mice, Transgenic , Presynaptic Terminals/metabolism
15.
J Clin Invest ; 127(2): 681-694, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28112682

ABSTRACT

Olfactory dysfunction is broadly associated with neurodevelopmental and neurodegenerative diseases and predicts increased mortality rates in healthy individuals. Conventional measurements of olfactory health assess odor processing pathways within the brain and provide a limited understanding of primary odor detection. Quantification of the olfactory sensory neurons (OSNs), which detect odors within the nasal cavity, would provide insight into the etiology of olfactory dysfunction associated with disease and mortality. Notably, OSNs are continually replenished by adult neurogenesis in mammals, including humans, so OSN measurements are primed to provide specialized insights into neurological disease. Here, we have evaluated a PET radiotracer, [11C]GV1-57, that specifically binds mature OSNs and quantifies the mature OSN population in vivo. [11C]GV1-57 monitored native OSN population dynamics in rodents, detecting OSN generation during postnatal development and aging-associated neurodegeneration. [11C]GV1-57 additionally measured rates of neuron regeneration after acute injury and early-stage OSN deficits in a rodent tauopathy model of neurodegenerative disease. Preliminary assessment in nonhuman primates suggested maintained uptake and saturable binding of [18F]GV1-57 in primate nasal epithelium, supporting its translational potential. Future applications for GV1-57 include monitoring additional diseases or conditions associated with olfactory dysregulation, including cognitive decline, as well as monitoring effects of neuroregenerative or neuroprotective therapeutics.


Subject(s)
Aging , Olfaction Disorders/diagnostic imaging , Olfactory Nerve/diagnostic imaging , Olfactory Pathways/diagnostic imaging , Positron-Emission Tomography/methods , Tauopathies/diagnostic imaging , Animals , Male , Olfaction Disorders/physiopathology , Olfactory Nerve/physiopathology , Olfactory Pathways/physiopathology , Radioactive Tracers , Rats , Rats, Sprague-Dawley , Tauopathies/physiopathology
16.
Neurobiol Aging ; 39: 184-94, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26923415

ABSTRACT

Mouse models of Alzheimer's disease have served as valuable tools for investigating pathogenic mechanisms relating to neurodegeneration, including tau-mediated and neurofibrillary tangle pathology-a major hallmark of the disease. In this work, we have used multiparametric magnetic resonance imaging (MRI) in a longitudinal study of neurodegeneration in the rTg4510 mouse model of tauopathy, a subset of which were treated with doxycycline at different time points to suppress the tau transgene. Using this paradigm, we investigated the sensitivity of multiparametric MRI to both the accumulation and suppression of pathologic tau. Tau-related atrophy was discernible from 5.5 months within the cortex and hippocampus. We observed markedly less atrophy in the treated rTg4510 mice, which was enhanced after doxycycline intervention from 3.5 months. We also observed differences in amide proton transfer, cerebral blood flow, and diffusion tensor imaging parameters in the rTg4510 mice, which were significantly less altered after doxycycline treatment. We propose that these non-invasive MRI techniques offer insight into pathologic mechanisms underpinning Alzheimer's disease that may be important when evaluating emerging therapeutics targeting one of more of these processes.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Magnetic Resonance Imaging/methods , Neurofibrillary Tangles/pathology , Tauopathies/pathology , tau Proteins/metabolism , Animals , Atrophy/genetics , Cerebral Cortex/pathology , Disease Models, Animal , Doxycycline/pharmacology , Female , Hippocampus/pathology , Longitudinal Studies , Male , Mice, Transgenic , Transgenes/drug effects , tau Proteins/genetics
17.
J Neurosci ; 36(3): 762-72, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26791207

ABSTRACT

The interneuronal propagation of aggregated tau is believed to play an important role in the pathogenesis of human tauopathies. It requires the uptake of seed-competent tau into cells, seeding of soluble tau in recipient neurons and release of seeded tau into the extracellular space to complete the cycle. At present, it is not known which tau species are seed-competent. Here, we have dissected the molecular characteristics of seed-competent tau species from the TgP301S tau mouse model using various biochemical techniques and assessed their seeding ability in cell and animal models. We found that sucrose gradient fractions from brain lysates seeded cellular tau aggregation only when large (>10 mer) aggregated, hyperphosphorylated (AT8- and AT100-positive) and nitrated tau was present. In contrast, there was no detectable seeding by fractions containing small, oligomeric (<6 mer) tau. Immunodepletion of the large aggregated AT8-positive tau strongly reduced seeding; moreover, fractions containing these species initiated the formation and spreading of filamentous tau pathology in vivo, whereas fractions containing tau monomers and small oligomeric assemblies did not. By electron microscopy, seed-competent sucrose gradient fractions contained aggregated tau species ranging from ring-like structures to small filaments. Together, these findings indicate that a range of filamentous tau aggregates are the major species that underlie the spreading of tau pathology in the P301S transgenic model. Significance statement: The spread of tau pathology from neuron to neuron is postulated to account for, or at least to contribute to, the overall propagation of tau pathology during the development of human tauopathies including Alzheimer's disease. It is therefore important to characterize the native tau species responsible for this process of seeding and pathology spreading. Here, we use several biochemical techniques to dissect the molecular characteristics of native tau protein conformers from TgP301S tau mice and show that seed-competent tau species comprise small fibrils capable of seeding tau pathology in cell and animal models. Characterization of seed-competent tau gives insight into disease mechanisms and therapeutic interventions.


Subject(s)
Amyloid/genetics , Brain , Neurofibrillary Tangles/genetics , Tauopathies/genetics , tau Proteins/genetics , Animals , Brain/pathology , Female , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurofibrillary Tangles/pathology , Tauopathies/pathology
18.
Mov Disord ; 30(7): 960-7, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25854893

ABSTRACT

BACKGROUND: Glial cytoplasmic inclusions containing α-synuclein are the pathological hallmark of multiple system atrophy (MSA). Minimal change (MC-MSA) is an unusual MSA subtype with neuronal loss largely restricted to the substantia nigra and locus coeruleus. METHODS: Immunohistochemistry on selected brain regions and semiquantitative assessment were performed on six MC-MSA and eight MSA control cases. RESULTS: More neuronal cytoplasmic inclusions were seen in the caudate and substantia nigra in MC-MSA than in MSA controls (P = 0.002), without any statistical difference in glial cytoplasmic inclusion load in any region. Severe glial cytoplasmic inclusion load was found in the ventrolateral medulla (P = 1.0) and nucleus raphe obscurus (P = 0.4) in both groups. When compared with MSA controls, the three MC-MSA cases who had died of sudden unexpected death had an earlier age of onset (mean: 38 vs. 57.6 y, P = 0.02), a numerically shorter disease duration (mean: 5.3 vs. 8 y, P = 0.2) and a more rapid clinical progression with most of the clinical milestones reached within 3 y of presentation, suggesting an aggressive variant of MSA. Another three MC-MSA cases, who had died of unrelated concurrent diseases, had an age of onset (mean: 57.7 y) and temporal course similar to controls, had less severe neuronal loss and gliosis in the medial and dorsolateral substantia nigra subregions (P < 0.05) than in MSA controls, and could be considered as a unique group with interrupted pathological progression. Significant respiratory dysfunction and early orthostatic hypotension were observed in all MC-MSA cases. CONCLUSIONS: Our findings could suggest that α-synuclein-associated oligodendroglial pathology may lead to neuronal dysfunction sufficient to cause clinical symptoms before overt neuronal loss in MSA. © 2015 International Parkinson and Movement Disorder Society.


Subject(s)
Brain/pathology , Inclusion Bodies/pathology , Multiple System Atrophy/classification , Multiple System Atrophy/pathology , Tissue Banks , alpha-Synuclein/metabolism , Adult , Age of Onset , Aged , Aged, 80 and over , Brain/metabolism , Humans , Inclusion Bodies/metabolism , Male , Middle Aged , Multiple System Atrophy/metabolism
19.
Acta Neuropathol ; 127(5): 667-83, 2014 May.
Article in English | MEDLINE | ID: mdl-24531916

ABSTRACT

Intracellular inclusions composed of hyperphosphorylated filamentous tau are a hallmark of Alzheimer's disease, progressive supranuclear palsy, Pick's disease and other sporadic neurodegenerative tauopathies. Recent in vitro and in vivo studies have shown that tau aggregates do not only seed further tau aggregation within neurons, but can also spread to neighbouring cells and functionally connected brain regions. This process is referred to as 'tau propagation' and may explain the stereotypic progression of tau pathology in the brains of Alzheimer's disease patients. Here, we describe a novel in vivo model of tau propagation using human P301S tau transgenic mice infused unilaterally with brain extract containing tau aggregates. Infusion-related neurofibrillary tangle pathology was first observed 2 weeks post-infusion and increased in a stereotypic, time-dependent manner. Contralateral and anterior/posterior spread of tau pathology was also evident in nuclei with strong synaptic connections (efferent and afferent) to the site of infusion, indicating that spread was dependent on synaptic connectivity rather than spatial proximity. This notion was further supported by infusion-related tau pathology in white matter tracts that interconnect these regions. The rapid and robust propagation of tau pathology in this model will be valuable for both basic research and the drug discovery process.


Subject(s)
Brain/pathology , Neurofibrillary Tangles/pathology , Tauopathies/pathology , tau Proteins/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Disease Progression , Female , Hippocampus/metabolism , Hippocampus/pathology , Humans , Immunohistochemistry , Mice, Inbred C57BL , Mice, Transgenic , Neural Pathways/metabolism , Neural Pathways/pathology , Neurofibrillary Tangles/metabolism , Random Allocation , Synapses/metabolism , Synapses/pathology , Tauopathies/metabolism , Time Factors , White Matter/metabolism , White Matter/pathology , tau Proteins/genetics
20.
Acta Neuropathol ; 126(4): 537-544, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23995422

ABSTRACT

Recent studies have highlighted a group of 4-repeat (4R) tauopathies that are characterised neuropathologically by widespread, globular glial inclusions (GGIs). Tau immunohistochemistry reveals 4R immunoreactive globular oligodendroglial and astrocytic inclusions and the latter are predominantly negative for Gallyas silver staining. These cases are associated with a range of clinical presentations, which correlate with the severity and distribution of underlying tau pathology and neurodegeneration. Their heterogeneous clinicopathological features combined with their rarity and under-recognition have led to cases characterised by GGIs being described in the literature using various and redundant terminologies. In this report, a group of neuropathologists form a consensus on the terminology and classification of cases with GGIs. After studying microscopic images from previously reported cases with suspected GGIs (n = 22), this panel of neuropathologists with extensive experience in the diagnosis of neurodegenerative diseases and a documented record of previous experience with at least one case with GGIs, agreed that (1) GGIs were present in all the cases reviewed; (2) the morphology of globular astrocytic inclusions was different to tufted astrocytes and finally that (3) the cases represented a number of different neuropathological subtypes. They also agreed that the different morphological subtypes are likely to be part of a spectrum of a distinct disease entity, for which they recommend that the overarching term globular glial tauopathy (GGT) should be used. Type I cases typically present with frontotemporal dementia, which correlates with the fronto-temporal distribution of pathology. Type II cases are characterised by pyramidal features reflecting motor cortex involvement and corticospinal tract degeneration. Type III cases can present with a combination of frontotemporal dementia and motor neuron disease with fronto-temporal cortex, motor cortex and corticospinal tract being severely affected. Extrapyramidal features can be present in Type II and III cases and significant degeneration of the white matter is a feature of all GGT subtypes. Improved detection and classification will be necessary for the establishment of neuropathological and clinical diagnostic research criteria in the future.


Subject(s)
Neuroglia/pathology , Tauopathies/pathology , Astrocytes/pathology , Consensus , Humans , Immunohistochemistry , Inclusion Bodies/pathology , Neurodegenerative Diseases/pathology , Silver Staining , Tauopathies/classification , Terminology as Topic , tau Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...