Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(21): 14815-14834, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38716105

ABSTRACT

Layered double hydroxides (LDH) are promising 2D nanomaterials being investigated for several engineering and biomedical applications. In this work, quinary Zr Al Fe Co Ni LDH and its Al Fe Co Ni LDH quaternary and Fe Co Ni LDH tertiary roots were prepared and characterized. All samples showed an aggregated, layered morphology with zero surface charge and approximately 300 nm of hydrodynamic size. BET surface area of Al Fe Co Ni LDH showed a remarkable value of 143.25 m2 g-1 as opposed to 26.2 m2 g-1 and 45.4 m2 g-1 for Fe Co Ni LDH and Zr Al Fe Co Ni LDH, respectively. The antimicrobial activity of the prepared samples was assessed against the many pathogenic bacteria; Bacillus (B.) subtilis, Escherichia (E.) coli, Haemophilus (H.) influenza, Listeria (L.) monocytogenes, Staphylococcus (S.) aureus, and Streptococcus (St.) pneumonia, and six fungal species. Furthermore, anti-biofilm activity, growth curve assay, and effect of UV illumination were examined against various pathogenic microbes. Zr Al Fe Co Ni displayed remarkable antibacterial activity, as indicated by the lowest values of the minimum inhibitory concentrations (MIC) of 4-166.7 µg mL-1. Results for fungal strains varied in terms of their susceptibilities for the different samples tested. Zn Al Fe Co Ni was able to inhibit the biofilm formation of S. aureus (96.09%), E. coli (98.32%), and Candida (C.) albicans (95.93%). This study shown that certain LDH categories, particularly Zr Al Fe Co Ni, may be promising antibacterial agents against variety of pathogenic microorganisms that cause serious infections.

2.
Sci Rep ; 13(1): 17613, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848502

ABSTRACT

Investigation of a unique and fast method for the determination and separation of a mixture of three drugs viz., ciprofloxacin (CIP), Ibuprofen (IBU), and diclofenac sodium (DIC) in actual samples of human plasma. Also, the technique was used to look at their pharmacokinetics study. Hydrocortisone was chosen as the internal standard (IS). The drugs were chromatographically separated using an Acquity ultra-performance liquid chromatography UPLC ® BEH C18 1.7 µm (2.1 × 150 mm) column with a mobile phase composed of acetonitrile: water (65:35, v/v) adjusted to pH 3 with diluted acetic acid. Plasma proteins were precipitated with acetonitrile. The separated drugs ranged from 0.3 to 10, 0.2-11, and 1-25 µg/mL for CIP, IBU, and DIC, respectively. Calibration curves were discovered to achieve linearity with acceptable correlation coefficients (0.99%). Examination of quality assurance samples showed exceptional precision and accuracy. Following the successful application of this improved technique to plasma samples, the pharmacokinetic characteristics of each selected drug were evaluated using (UPLC) with UV detection at 210 nm. Two green metrics were applied, the Analytical Eco-scale and the Analytical GREEnness Calculator (AGREE). Separation was achieved in only 4-min analysis time. The method's validation agreed with the requirements of the FDA, and the results were sufficient.


Subject(s)
Diclofenac , Ibuprofen , Humans , Chromatography, High Pressure Liquid/methods , Ciprofloxacin , Tandem Mass Spectrometry/methods , Reproducibility of Results , Acetonitriles
SELECTION OF CITATIONS
SEARCH DETAIL
...