Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroimmune Pharmacol ; 13(1): 90-99, 2018 03.
Article in English | MEDLINE | ID: mdl-28905187

ABSTRACT

Pro-inflammatory activity and cell-mediated immune responses have been widely observed in patients with major depressive disorder (MDD). Besides their well-known function as antibody-producers, B cells play a key role in inflammatory responses by secreting pro- and anti-inflammatory factors. However, homeostasis of specific B cell subsets has not been comprehensively investigated in MDD. In this study, we characterized circulating B cells of distinct developmental steps including transitional, naïve-mature, antigen-experienced switched, and non-switched memory cells, plasmablasts and regulatory B cells by multi-parameter flow cytometry. In a 6-weeks follow-up, circulating B cells were monitored in a small group of therapy responders and non-responders. Frequencies of naïve lgD+CD27- B cells, but not lgD+CD27+ memory B cells, were reduced in severely depressed patients as compared to healthy donors (HD) or mildly to moderately depressed patients. Specifically, B cells with immune-regulatory capacities such as CD1d+CD5+ B cells and CD24+CD38hi transitional B cells were reduced in MDD. Also Bm1-Bm5 classification in MDD revealed reduced Bm2' cells comprising germinal center founder cells as well as transitional B cells. We further found that reduced CD5 surface expression on transitional B cells was associated with severe depression and normalized exclusively in clinical responders. This study demonstrates a compromised peripheral B cell compartment in MDD with a reduction in B cells exhibiting a regulatory phenotype. Recovery of CD5 surface expression on transitional B cells in clinical response, a molecule involved in activation and down-regulation of B cell responses, further points towards a B cell-dependent process in the pathogenesis of MDD.


Subject(s)
B-Lymphocyte Subsets/immunology , B-Lymphocytes, Regulatory/immunology , Depressive Disorder, Major/immunology , Homeostasis/immunology , Adult , CD5 Antigens/immunology , Female , Humans , Male , Middle Aged , Pilot Projects
2.
Neurol Neuroimmunol Neuroinflamm ; 3(6): e289, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27766281

ABSTRACT

OBJECTIVE: To characterize changes in myeloid and lymphoid innate immune cells in patients with relapsing-remitting multiple sclerosis (MS) during a 6-month follow-up after alemtuzumab treatment. METHODS: Circulating innate immune cells including myeloid cells and innate lymphoid cells (ILCs) were analyzed before and 6 and 12 months after onset of alemtuzumab treatment. Furthermore, a potential effect on granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-23 production by myeloid cells and natural killer (NK) cell cytolytic activity was determined. RESULTS: In comparison to CD4+ T lymphocytes, myeloid and lymphoid innate cell subsets of patients with MS expressed significantly lower amounts of CD52 on their cell surface. Six months after CD52 depletion, numbers of circulating plasmacytoid dendritic cells (DCs) and conventional DCs were reduced compared to baseline. GM-CSF and IL-23 production in DCs remained unchanged. Within the ILC compartment, the subset of CD56bright NK cells specifically expanded under alemtuzumab treatment, but their cytolytic activity did not change. CONCLUSIONS: Our findings demonstrate that 6 months after alemtuzumab treatment, specific DC subsets are reduced, while CD56bright NK cells expanded in patients with MS. Thus, alemtuzumab specifically restricts the DC compartment and expands the CD56bright NK cell subset with potential immunoregulatory properties in MS. We suggest that remodeling of the innate immune compartment may promote long-term efficacy of alemtuzumab and preserve immunocompetence in patients with MS.

SELECTION OF CITATIONS
SEARCH DETAIL
...