Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 12(1)2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31936638

ABSTRACT

Composites of carbon black (CB) and polymers are attractive for producing conductive fibers. Herein, to achieve improved interactions with polymers, the surface of CB was modified to form 4-aminobenzoyl-functionalized carbon black (ABCB), benzoxazine-functionalized carbon black (BZCB), and Ag-anchored carbon black (Ag-ABCB). The surface-modified CBs were characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis, and X-ray photoelectron spectroscopy was utilized to confirm the presence of Ag in Ag-ABCB. Conductive polyacrylonitrile (PAN) fibers were wet-spun with conductive fillers (CB, ABCB, Ag-ABCB, and BZCB) to investigate the effects of various functional groups on the electrical and mechanical properties. After annealing the conductive PAN fibers, the conductivity and tensile strength greatly increased, whereas the diameter decreased. Notably, the fiber with a BZCB/PAN weight ratio of 12/88 possessed a conductivity of 8.9 × 10-4 S/cm, and strength of 110.4 MPa, and thus the highest conductivity and best mechanical properties in the conductive PAN fiber. These results indicate that the annealed BZCB/PAN fibers have potential applications in the manufacturing of antistatic fabrics.

2.
Polymers (Basel) ; 11(10)2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31623389

ABSTRACT

In this study, amine functionalized carbon black (ABCB) was synthesized using 4-aminobenzoic acid in a phosphoric acid (PPA)/phosphorus pentoxide (P2O5) medium, and silver-attached carbon black (Ag-ABCB) was prepared by reducing AgNO3 with NaBH4 in the presence of ABCB in ethanol. Elemental, thermogravimetric, and Fourier transform-infrared analyses showed that carbon black (CB) had a well-functionalized 4-aminobenzoic acid. In addition, X-ray photoelectron spectroscopy and X-ray diffraction were used to examine the crystal structure of Ag nanoparticles. Conductive fibers were prepared by melt-spinning using ABCB, Ag-ABCB as a conductive filler, and polyethylene terephthalate (PET) as a polymer matrix. Results confirmed that the fiber that had Ag-ABCB as a conductive filler exhibited the best electrical conductivity. The dispersibility and morphology of the conductive filler in the PET matrix were confirmed through scanning electron microscopy analysis, and Ag-ABCB was the most uniformly dispersed filler in the PET matrix, with good structure.

3.
Sci Rep ; 9(1): 6338, 2019 Apr 19.
Article in English | MEDLINE | ID: mdl-31004091

ABSTRACT

In this study, using three types of resins (each with unique material properties) as a matrix, and carbon black (CB) as a conductive additive, conductive fibres were fabricated through a melt-spinning process. An examination of the electrical conductivity revealed that a CB/polyethylene terephthalate (PET) composite had a low percolation value of 0.58 wt%, and thus the highest conductivity of the three resin types. These results indicate that CB/PET fibres could be used to manufacture antistatic fabrics.

SELECTION OF CITATIONS
SEARCH DETAIL
...