Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37781607

ABSTRACT

Endocytosis and lysosomal trafficking of cell surface receptors can be triggered by interaction with endogenous ligands. Therapeutic approaches such as LYTAC1,2 and KineTAC3, have taken advantage of this to target specific proteins for degradation by fusing modified native ligands to target binding proteins. While powerful, these approaches can be limited by possible competition with the endogenous ligand(s), the requirement in some cases for chemical modification that limits genetic encodability and can complicate manufacturing, and more generally, there may not be natural ligands which stimulate endocytosis through a given receptor. Here we describe general protein design approaches for designing endocytosis triggering binding proteins (EndoTags) that overcome these challenges. We present EndoTags for the IGF-2R, ASGPR, Sortillin, and Transferrin receptors, and show that fusing these tags to proteins which bind to soluble or transmembrane protein leads to lysosomal trafficking and target degradation; as these receptors have different tissue distributions, the different EndoTags could enable targeting of degradation to different tissues. The modularity and genetic encodability of EndoTags enables AND gate control for higher specificity targeted degradation, and the localized secretion of degraders from engineered cells. The tunability and modularity of our genetically encodable EndoTags should contribute to deciphering the relationship between receptor engagement and cellular trafficking, and they have considerable therapeutic potential as targeted degradation inducers, signaling activators for endocytosis-dependent pathways, and cellular uptake inducers for targeted antibody drug and RNA conjugates.

2.
Science ; 382(6668): eadf6249, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37856615

ABSTRACT

Targeted protein degradation can provide advantages over inhibition approaches in the development of therapeutic strategies. Lysosome-targeting chimeras (LYTACs) harness receptors, such as the cation-independent mannose 6-phosphate receptor (CI-M6PR), to direct extracellular proteins to lysosomes. In this work, we used a genome-wide CRISPR knockout approach to identify modulators of LYTAC-mediated membrane protein degradation in human cells. We found that disrupting retromer genes improved target degradation by reducing LYTAC recycling to the plasma membrane. Neddylated cullin-3 facilitated LYTAC-complex lysosomal maturation and was a predictive marker for LYTAC efficacy. A substantial fraction of cell surface CI-M6PR remains occupied by endogenous M6P-modified glycoproteins. Thus, inhibition of M6P biosynthesis increased the internalization of LYTAC-target complexes. Our findings inform design strategies for next-generation LYTACs and elucidate aspects of cell surface receptor occupancy and trafficking.


Subject(s)
Lysosomes , Membrane Proteins , Proteolysis Targeting Chimera , Proteolysis , Receptor, IGF Type 2 , Humans , HeLa Cells , Lysosomes/metabolism , Membrane Proteins/metabolism , Receptor, IGF Type 2/genetics , Receptor, IGF Type 2/metabolism , Cullin Proteins/metabolism , Proteolysis Targeting Chimera/metabolism
3.
JACS Au ; 1(9): 1368-1379, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34604847

ABSTRACT

There is an urgent need for point-of-care tuberculosis (TB) diagnostic methods that are fast, inexpensive, and operationally simple. Here, we report on a bright solvatochromic dye trehalose conjugate that specifically detects Mycobacterium tuberculosis (Mtb) in minutes. 3-Hydroxychromone (3HC) dyes, known for having high fluorescence quantum yields, exhibit shifts in fluorescence intensity in response to changes in environmental polarity. We synthesized two analogs of 3HC-trehalose conjugates (3HC-2-Tre and 3HC-3-Tre) and determined that 3HC-3-Tre has exceptionally favorable properties for Mtb detection. 3HC-3-Tre-labeled mycobacterial cells displayed a 10-fold increase in fluorescence intensity compared to our previous reports on the dye 4,4-N,N-dimethylaminonapthalimide (DMN-Tre). Excitingly, we detected fluorescent Mtb cells within 10 min of probe treatment. Thus, 3HC-3-Tre permits rapid visualization of mycobacteria that ultimately could empower improved Mtb detection at the point-of-care in low-resource settings.

4.
Nat Chem Biol ; 17(9): 937-946, 2021 09.
Article in English | MEDLINE | ID: mdl-33767387

ABSTRACT

Selective protein degradation platforms have afforded new development opportunities for therapeutics and tools for biological inquiry. The first lysosome-targeting chimeras (LYTACs) targeted extracellular and membrane proteins for degradation by bridging a target protein to the cation-independent mannose-6-phosphate receptor (CI-M6PR). Here, we developed LYTACs that engage the asialoglycoprotein receptor (ASGPR), a liver-specific lysosome-targeting receptor, to degrade extracellular proteins in a cell-type-specific manner. We conjugated binders to a triantenerrary N-acetylgalactosamine (tri-GalNAc) motif that engages ASGPR to drive the downregulation of proteins. Degradation of epidermal growth factor receptor (EGFR) by GalNAc-LYTAC attenuated EGFR signaling compared to inhibition with an antibody. Furthermore, we demonstrated that a LYTAC consisting of a 3.4-kDa peptide binder linked to a tri-GalNAc ligand degrades integrins and reduces cancer cell proliferation. Degradation with a single tri-GalNAc ligand prompted site-specific conjugation on antibody scaffolds, which improved the pharmacokinetic profile of GalNAc-LYTACs in vivo. GalNAc-LYTACs thus represent an avenue for cell-type-restricted protein degradation.


Subject(s)
Asialoglycoprotein Receptor/metabolism , Lysosomes/metabolism , Acetylgalactosamine/metabolism , Humans , Tumor Cells, Cultured
5.
Cell Chem Biol ; 28(7): 1072-1080, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33770486

ABSTRACT

Targeted protein degradation (TPD) is a promising strategy to remove deleterious proteins for therapeutic benefit and to probe biological pathways. The past two decades have witnessed a surge in the development of technologies that rely on intracellular machinery to degrade challenging cytosolic targets. However, these TPD platforms leave the majority of extracellular and membrane proteins untouched. To enable degradation of these classes of proteins, internalizing receptors can be co-opted to traffic extracellular proteins to the lysosome. Sweeping antibodies and Seldegs use Fc receptors in conjunction with engineered antibodies to degrade soluble proteins. Recently, lysosome-targeting chimeras (LYTACs) have emerged as a strategy to degrade both secreted and membrane-anchored targets. Together with other newcomer technologies, including antibody-based proteolysis-targeting chimeras, modalities that degrade extracellular proteins have promising translational potential. This perspective will give an overview of TPD platforms that degrade proteins via outside-in approaches and focus on the recent development of LYTACs.


Subject(s)
Lysosomes/metabolism , Membrane Proteins/metabolism
6.
ACS Synth Biol ; 10(1): 173-182, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33375785

ABSTRACT

Fungal natural products (NPs) comprise a vast number of bioactive molecules with diverse activities, and among them are many important drugs. However, the yields of fungal NPs from native producers are usually low, and total synthesis of structurally complex NPs is challenging. As such, downstream derivatization and optimization of lead fungal NPs can be impeded by the high cost of obtaining sufficient starting material. In recent years, reconstitution of NP biosynthetic pathways in heterologous hosts has become an attractive alternative approach to produce complex NPs. Here, we present an efficient, cloning-free strategy for the cluster refactoring and total biosynthesis of fungal NPs in Aspergillus nidulans. Our platform places our genes of interest (GOIs) under the regulation of the robust asperfuranone afo biosynthesis gene machinery, allowing for their concerted activation upon induction. We demonstrated the utility of our system by creating strains that can synthesize high-value NPs, citreoviridin (1), mutilin (2), and pleuromutilin (3), with good to high yield and purity. This platform can be used not only for producing NPs of interests (i.e., total biosynthesis) but also for elucidating cryptic biosynthesis pathways.


Subject(s)
Aspergillus nidulans/metabolism , Biological Products/metabolism , Biosynthetic Pathways/genetics , Aspergillus nidulans/genetics , Aurovertins/chemistry , Aurovertins/metabolism , Benzofurans/chemistry , Benzofurans/metabolism , Biological Products/chemistry , Diterpenes/chemistry , Diterpenes/metabolism , Genes, Fungal , Homologous Recombination , Ketones/chemistry , Ketones/metabolism , Multigene Family , Plasmids/genetics , Plasmids/metabolism , Polycyclic Compounds/chemistry , Polycyclic Compounds/metabolism , Regulon/genetics , Pleuromutilins
7.
Nat Chem Biol ; 16(12): 1376-1384, 2020 12.
Article in English | MEDLINE | ID: mdl-32807964

ABSTRACT

Currently approved immune checkpoint inhibitor therapies targeting the PD-1 and CTLA-4 receptor pathways are powerful treatment options for certain cancers; however, most patients across cancer types still fail to respond. Consequently, there is interest in discovering and blocking alternative pathways that mediate immune suppression. One such mechanism is an upregulation of sialoglycans in malignancy, which has been recently shown to inhibit immune cell activation through multiple mechanisms and therefore represents a targetable glycoimmune checkpoint. Since these glycans are not canonically druggable, we designed an αHER2 antibody-sialidase conjugate that potently and selectively strips diverse sialoglycans from breast cancer cells. In syngeneic breast cancer models, desialylation enhanced immune cell infiltration and activation and prolonged the survival of mice, an effect that was dependent on expression of the Siglec-E checkpoint receptor found on tumor-infiltrating myeloid cells. Thus, antibody-sialidase conjugates represent a promising modality for glycoimmune checkpoint therapy.


Subject(s)
Immunotherapy/methods , Melanoma, Experimental/therapy , Neuraminidase/immunology , Polysaccharides/chemistry , Receptor, ErbB-2/chemistry , Sialic Acid Binding Immunoglobulin-like Lectins/immunology , Allografts , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Cell Line, Tumor , Humans , Hydrolysis , Immunoconjugates/chemistry , Immunoconjugates/metabolism , Immunoconjugates/pharmacology , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/mortality , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Molecular , Molecular Targeted Therapy , Neuraminidase/chemistry , Neuraminidase/genetics , Polysaccharides/immunology , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Receptor, ErbB-2/genetics , Receptor, ErbB-2/immunology , Sialic Acid Binding Immunoglobulin-like Lectins/chemistry , Sialic Acid Binding Immunoglobulin-like Lectins/genetics , Survival Analysis , T-Lymphocytes/cytology , T-Lymphocytes/immunology
8.
Nature ; 584(7820): 291-297, 2020 08.
Article in English | MEDLINE | ID: mdl-32728216

ABSTRACT

The majority of therapies that target individual proteins rely on specific activity-modulating interactions with the target protein-for example, enzyme inhibition or ligand blocking. However, several major classes of therapeutically relevant proteins have unknown or inaccessible activity profiles and so cannot be targeted by such strategies. Protein-degradation platforms such as proteolysis-targeting chimaeras (PROTACs)1,2 and others (for example, dTAGs3, Trim-Away4, chaperone-mediated autophagy targeting5 and SNIPERs6) have been developed for proteins that are typically difficult to target; however, these methods involve the manipulation of intracellular protein degradation machinery and are therefore fundamentally limited to proteins that contain cytosolic domains to which ligands can bind and recruit the requisite cellular components. Extracellular and membrane-associated proteins-the products of 40% of all protein-encoding genes7-are key agents in cancer, ageing-related diseases and autoimmune disorders8, and so a general strategy to selectively degrade these proteins has the potential to improve human health. Here we establish the targeted degradation of extracellular and membrane-associated proteins using conjugates that bind both a cell-surface lysosome-shuttling receptor and the extracellular domain of a target protein. These initial lysosome-targeting chimaeras, which we term LYTACs, consist of a small molecule or antibody fused to chemically synthesized glycopeptide ligands that are agonists of the cation-independent mannose-6-phosphate receptor (CI-M6PR). We use LYTACs to develop a CRISPR interference screen that reveals the biochemical pathway for CI-M6PR-mediated cargo internalization in cell lines, and uncover the exocyst complex as a previously unidentified-but essential-component of this pathway. We demonstrate the scope of this platform through the degradation of therapeutically relevant proteins, including apolipoprotein E4, epidermal growth factor receptor, CD71 and programmed death-ligand 1. Our results establish a modular strategy for directing secreted and membrane proteins for lysosomal degradation, with broad implications for biochemical research and for therapeutics.


Subject(s)
Extracellular Space/metabolism , Lysosomes/metabolism , Membrane Proteins/metabolism , Proteolysis , Recombinant Fusion Proteins/metabolism , Animals , Antibodies/chemistry , Antibodies/metabolism , Antigens, CD/metabolism , Apolipoprotein E4/metabolism , B7-H1 Antigen/metabolism , CRISPR-Cas Systems , Cell Line , ErbB Receptors/metabolism , Female , Glycopeptides/chemical synthesis , Glycopeptides/metabolism , Humans , Ligands , Membrane Proteins/chemistry , Mice , Protein Domains , Protein Transport , Receptor, IGF Type 2/metabolism , Receptors, Transferrin/metabolism , Recombinant Fusion Proteins/chemical synthesis , Recombinant Fusion Proteins/chemistry , Solubility , Substrate Specificity
9.
Fungal Genet Biol ; 101: 1-6, 2017 04.
Article in English | MEDLINE | ID: mdl-28108400

ABSTRACT

Fungal nonribosomal peptide synthetases (NRPSs) are megasynthetases that produce cyclic and acyclic peptides. In Aspergillus nidulans, the NRPS ivoA (AN10576) has been associated with the biosynthesis of grey-brown conidiophore pigments. Another gene, ivoB (AN0231), has been demonstrated to be an N-acetyl-6-hydroxytryptophan oxidase that putatively acts downstream of IvoA. A third gene, ivoC, has also been predicted to be involved in pigment biosynthesis based on publicly available genomic and transcriptomic information. In this paper, we report the replacement of the promoters of the ivoA, ivoB, and ivoC genes with the inducible promoter alcA in a single cotransformation. Co-overexpression of the three genes resulted in the production of a dark-brown pigment in hyphae. In addition, overexpression of each of the Ivo genes, ivoA-C, individually or in combination, allowed us to isolate intermediates and confirm the function of each gene. IvoA was found to be the first known NRPS to carry out the acetylation of the amino acid, tryptophan.


Subject(s)
Monophenol Monooxygenase/genetics , Peptide Biosynthesis, Nucleic Acid-Independent/genetics , Peptide Synthases/genetics , Pigmentation/genetics , Aspergillus nidulans/enzymology , Aspergillus nidulans/genetics , Fungal Proteins/biosynthesis , Fungal Proteins/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Fungal , Multigene Family/genetics , Promoter Regions, Genetic , Spores, Fungal/genetics , Spores, Fungal/growth & development , Tryptophan/biosynthesis
10.
Tetrahedron Lett ; 56(45): 6231-6235, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26494929

ABSTRACT

A method has been developed for one-step ortho-selective ligand-directed H-D exchange, accompanied in some cases by concurrent acid-catalyzed electrophilic deuteration. This method is effective for deuteration of aromatic substrates ranging from ketones to amides and amino acids, including compounds of biological and pharmaceutical interest such as acetaminophen and edaravone. Use of a palladium catalyst featuring an NHC ligand is critical for the observed reactivity. Experimental evidence strongly suggests that palladium facilitates C-H activation of the aromatic substrates, a mechanism seldom observed under strongly acidic conditions. 2015 Elsevier Ltd. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL
...