Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 23(6): 1613-1621, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36722393

ABSTRACT

Optimizing a wide range of reaction parameters, steps, and pathways is currently considered one of the most complex and challenging problems in microflow-based organic synthesis. As a novel solution, Bayesian optimization (BO) has been utilized to efficiently guide the optimized conditions of flow reactors; however, the benchmarking process for selecting the optimal model among various surrogate models remains inefficient. In this work, we report meta optimization (MO) by benchmarking multiple surrogate models in real-time without any pre-work, which is realized by evaluating the expected values obtained by the regressor used to build each surrogate model, enabling efficient optimization of reaction conditions. By the comparison of the performance of MO with that of various BOs on four datasets of different flow syntheses, it was verified that MO consistently performs the best-in-class for all emulators developed through machine learning, while the conventional BOs based on surrogate models such as the Gaussian process, random forest, neural network ensemble, and gradient boosting demonstrated varying performances from each emulator, which implies that benchmarking is required.

2.
Adv Sci (Weinh) ; 9(35): e2204170, 2022 12.
Article in English | MEDLINE | ID: mdl-36285674

ABSTRACT

Recent studies have found that green hydrogen production and biomass utilization technologies can be combined to efficiently produce both hydrogen and value-added chemicals using biomass as an electron and proton source. However, the majority of them have been limited to proof-of-concept demonstrations based on batch systems. Here the authors report the design of modular flow systems for the continuous depolymerization and valorization of lignin and low-voltage hydrogen production. A redox-active phosphomolybdic acid is used as a catalyst to depolymerize lignin with the production of aromatic compounds and extraction of electrons for hydrogen production. Individual processes for lignin depolymerization, byproduct separation, and hydrogen production with catalyst reactivation are modularized and integrated to perform the entire process in the serial flow. Consequently, this work enabled a one-flow process from biomass conversion to hydrogen gas generation under a cyclic loop. In addition, the unique advantages of the fluidic system (i.e., effective mass and heat transfer) substantially improved the yield and efficiency, leading to hydrogen production at a higher current density (20.5 mA cm-2 ) at a lower voltage (1.5 V) without oxygen evolution. This sustainable eco-chemical platform envisages scalable co-production of valuable chemicals and green hydrogen for industrial purposes in an energy-saving and safe manner.


Subject(s)
Hydrogen , Lignin , Lignin/chemistry , Catalysis , Oxidation-Reduction , Hydrogen/chemistry
3.
ACS Biomater Sci Eng ; 8(10): 4577-4585, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36089741

ABSTRACT

Microfluidic drug screening technologies have been extensively explored to evaluate the pharmacology and therapeutic implications of promising chemical compounds in multiplexed physiological microenvironments in vivo. However, conventional poly(dimethylsiloxane) microchips are susceptible to adsorption by hydrophobic molecules on channel surfaces and permeation in the matrix. These can significantly compromise the drug availability and accuracy of dose-dependent quantitative analyses. Here, we prepared a perfluorinated polyether (PFPE) microchip via digital light processing 3D printing as a quantitative drug screening platform for precise concentration-dependent pharmaceutical assays. Cells cultured on PFPE microchips exhibited excellent viability with a spread morphology as well as superior proliferative capability. Importantly, PFPE constructions with a low surface energy significantly prevented the nonspecific molecular adsorption into their surfaces or permeation into the matrix. In particular, the PFPE multibranched channel preserved the concentration of the pharmaceutical drug during the perfusion process and generated a linear concentration gradient, resulting in a dose-dependent chemotherapeutic effect. We suggest that the biocompatible and nonadsorbing PFPE microchannel can provide a cell-based drug screening platform for concentration-dependent quantitative analyses.


Subject(s)
Ethers , Lab-On-A-Chip Devices , Drug Evaluation, Preclinical , Ethers/chemistry , Ethers/pharmacology , Fluorocarbons , Pharmaceutical Preparations
4.
ACS Cent Sci ; 8(1): 43-50, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35106371

ABSTRACT

Continuous-flow microreactors enable ultrafast chemistry; however, their small capacity restricts industrial-level productivity of pharmaceutical compounds. In this work, scale-up subsecond synthesis of drug scaffolds was achieved via a 16 numbered-up printed metal microreactor (16N-PMR) assembly to render high productivity up to 20 g for 10 min operation. Initially, ultrafast synthetic chemistry of unstable lithiated intermediates in the halogen-lithium exchange reactions of three aryl halides and subsequent reactions with diverse electrophiles were carried out using a single microreactor (SMR). Larger production of the ultrafast synthesis was achieved by devising a monolithic module of 4 numbered-up 3D-printed metal microreactor (4N-PMR) that was integrated by laminating four SMRs and four bifurcation flow distributors in a compact manner. Eventually, the 16N-PMR system for the scalable subsecond synthesis of three drug scaffolds was assembled by stacking four monolithic modules of 4N-PMRs.

5.
Chemistry ; 28(20): e202103777, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-34963029

ABSTRACT

This work reports a cyanide-free continuous-flow process for cyanation of sp2 and sp carbons to synthesize aryl, vinyl and acetylenic nitriles from (5-methyl-2-phenyloxazol-4-yl) boronic acid [OxBA] reagent as a sole source of carbon-bound masked -CN source. Non-toxic and stable OxBA reagent is generated by lithiation-borylation of bromo-oxazole, and the consecutive Suzuki-Miyaura cross-coupling with aryl, vinyl, or acetylenic halides and demasking [4+2]/retro-[4+2] sequence were successfully accomplished to give the desired cyano compounds with reasonably good yields in a four-step flow manner. A unique feature of this cyanation protocol in flow enables to cyanate a variety of sp2 and sp carbons to produce a broad spectrum of aryl acetonitrile. It is envisaged that the OxBA based cyanation would replace existing unstable and toxic approaches as well as non-toxic cyanation using two different sources of "C" and "N" to incorporate the -CN group.

6.
Commun Chem ; 4(1): 53, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-36697557

ABSTRACT

The development of miniaturized flow platforms would enable efficient and selective synthesis of drug and lead molecules by rapidly exploring synthetic methodologies and screening for optimal conditions, progress in which could be transformative for the field. In spite of tremendous advances made in continuous flow technology, these reported flow platforms are not devised to conduct many different reactions simultaneously. Herein, we report a metal-based flow parallel synthesizer that enables multiplex synthesis of libraries of compounds and efficient screening of parameters. This miniaturized synthesizer, equipped with a unique built-in flow distributor and n number of microreactors, can execute multiple types of reactions in parallel under diverse conditions, including photochemistry. Diazonium-based reactions are explored as a test case by distributing the reagent to 16 (n = 16) capillaries to which various building blocks are supplied for the chemistry library synthesis at the optimal conditions obtained by multiplex screening of 96 different reaction variables in reaction time, concentration, and product type. The proficiency of the flow parallel synthesizer is showcased by multiplex formation of various C-C, C-N, C-X, and C-S bonds, leading to optimization of 24 different aryl diazonium chemistries.

7.
Adv Mater ; 32(34): e2002710, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32656789

ABSTRACT

Transparent substrates are widely used for optical applications from lenses for personal and sports eyewear to transparent displays and sensors. While these substrates require excellent optical properties, they often suffer from a variety of environmental challenges such as excessive fogging and surface contamination. In this work, it is demonstrated that a wet-style superhydrophobic coating, which simultaneously exhibits antifogging, antireflective, and self-cleaning properties, can be prepared by pattern transferring low-surface-energy microstructures onto a heterostructured nanoscale thin film comprising polymers and silica nanoparticles. The polymer-silica nanocomposite base layer serves as a hydrophilic reservoir, guiding the water molecules to preferentially condense into this underlying region and suppress reflection, while the low-surface-energy microstructure enables contaminants adsorbed on the surface to be easily removed by rinsing with water.

8.
Lab Chip ; 19(20): 3535-3542, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31555789

ABSTRACT

Microreactors are emerging as an efficient, sustainable synthetic tool compared to conventional batch reactors. Here, we present a new numbering-up metal microreactor by integrating a flow distributor and a copper catalytic module for high productivity of a commercial synthetic drug. A flow distributor and an embedded baffle disc were manufactured by CNC machining and 3D printing of stainless steel (S/S), respectively, whereas a catalytic reaction module was composed of 25 copper coiled capillaries configured in parallel. Eventually, the numbering-up microreactor system assembled with functional modules showed uniform flow distribution and high mixing efficiency regardless of clogging, and achieved high-throughput synthesis of the drug "rufinamide", an anticonvulsant medicine, via a Cu(i)-catalyzed azide-alkyne cycloaddition reaction under optimized conditions.


Subject(s)
Copper/chemistry , Microfluidics/methods , Triazoles/chemistry , Alkynes/chemistry , Azides/chemistry , Catalysis , Cycloaddition Reaction , Microfluidics/instrumentation , Printing, Three-Dimensional , Stainless Steel/chemistry , Triazoles/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...