Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Bioengineering (Basel) ; 10(4)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37106619

ABSTRACT

Inoculation is a widely used method to improve the efficiency of anaerobic digestion (AD) with a high organic load. This study was conducted to prove the potential of dairy manure as an inoculum source for AD of swine manure. Furthermore, an appropriate inoculum-to-substrate (I/S) ratio was determined to improve methane yield and reduce the required time of AD. We carried out 176 days of anaerobic digestion for five different I/S ratios (3, 1, and 0.3 on a volatile solid basis, dairy manure alone, and swine manure alone) of manure, using solid container submerged lab-scale reactors in mesophilic conditions. As a result, solid-state swine manure inoculated with dairy manure could be digested without inhibition caused by ammonia and volatile fatty acid accumulation. The highest methane yield potential was observed in I/S ratios 1 and 0.3, as 133 and 145 mL CH4·g-1-VS, respectively. The lag phase of swine manure alone was more extended, 41 to 47 days, than other treatments containing dairy manure, directly related to tardy startup. These results revealed that dairy manure can be used as an inoculum source for AD of swine manure. The proper I/S ratios leading to successful AD of swine manure were 1 and 0.3.

2.
Article in English | MEDLINE | ID: mdl-33562692

ABSTRACT

Livestock production systems generate nuisance odor and gaseous emissions affecting local communities and regional air quality. There are also concerns about the occupational health and safety of farmworkers. Proven mitigation technologies that are consistent with the socio-economic challenges of animal farming are needed. We have been scaling up the photocatalytic treatment of emissions from lab-scale, aiming at farm-scale readiness. In this paper, we present the design, testing, and commissioning of a mobile laboratory for on-farm research and demonstration of performance in simulated farm conditions before testing to the farm. The mobile lab is capable of treating up to 1.2 m3/s of air with titanium dioxide, TiO2-based photocatalysis, and adjustable UV-A dose based on LED lamps. We summarize the main technical requirements, constraints, approach, and performance metrics for a mobile laboratory, such as the effectiveness (measured as the percent reduction) and cost of photocatalytic treatment of air. The commissioning of all systems with standard gases resulted in ~9% and 34% reduction of ammonia (NH3) and butan-1-ol, respectively. We demonstrated the percent reduction of standard gases increased with increased light intensity and treatment time. These results show that the mobile laboratory was ready for on-farm deployment and evaluating the effectiveness of UV treatment.


Subject(s)
Air Pollution , Livestock , Agriculture , Air Pollution/analysis , Air Pollution/prevention & control , Ammonia/analysis , Animals , Gases , Laboratories
3.
Front Chem ; 8: 613, 2020.
Article in English | MEDLINE | ID: mdl-32903735

ABSTRACT

Poultry farmers are producing eggs, meat, and feathers with increased efficiency and lower carbon footprint. Technologies to address concerns about the indoor air quality inside barns and the gaseous emissions from farms to the atmosphere continue to be among industry priorities. We have been developing and scaling up a UV air treatment that has the potential to reduce odor and other gases on the farm scale. In our recent laboratory-scale study, the use of UV-A (a less toxic ultraviolet light, a.k.a. "black light") and a special TiO2-based photocatalyst reduced concentrations of several important air pollutants (NH3, CO2, N2O, O3) without impact on H2S and CH4. Therefore, the objectives of this research were to (1) scale up the UV treatment to pilot scale, (2) evaluate the mitigation of odor and odorous volatile organic compounds (VOCs), and (3) complete preliminary economic analyses. A pilot-scale experiment was conducted under commercial poultry barn conditions to evaluate photocatalyst coatings on surfaces subjected to UV light under field conditions. In this study, the reactor was constructed to support interchangeable wall panels and installed on a poultry farm. The effects of a photocatalyst's presence (photocatalysis and photolysis), UV intensity (LED and fluorescent), and treatment time were studied in the pilot-scale experiments inside a poultry barn. The results of the pilot-scale experiments were consistent with the laboratory-scale one: the percent reduction under photocatalysis was generally higher than photolysis. In addition, the percent reduction of target gases at a high light intensity and long treatment time was higher. The percent reduction of NH3 was 5-9%. There was no impact on H2S, CH4, and CO2 under any experimental conditions. N2O and O3 concentrations were reduced at 6-12% and 87-100% by both photolysis and photocatalysis. In addition, concentrations of several VOCs responsible for livestock odor were reduced from 26 to 62% and increased with treatment time and light intensity. The odor was reduced by 18%. Photolysis treatment reduced concentrations of N2O, VOCs, and O3, only. The initial economic analysis has shown that LEDs are more efficient than fluorescent lights. Further scale-up and research at farm scale are warranted.

4.
Microorganisms ; 8(6)2020 May 31.
Article in English | MEDLINE | ID: mdl-32486515

ABSTRACT

In our study, we monitored the inactivation of two important viruses that are critical in animal husbandry throughout the world. To evaluate the influence of the composting process on inactivation of avian influenza virus (H9N2) in poultry manure compost (PMC) and Encephalomyocarditis virus (EMCV) in pig (swine) manure compost (SMC), the H9N2 and EMCV were injected in dialysis cassettes and buried in two different manure compost piles of poultry and pig manure, respectively. The highest temperature achieved in the PMC and SMC piles during the test period were 75 °C and 73.5 °C, respectively. At the completion of the composting for 168 h, inactivation effect appeared to be more sensitive in H9N2 than EMCV. The vitality of H9N2 decreased by 6.25±0.35 log10TCID50/mL to 0.0 log10TCID50/mL within 1 h of the composting. The vitality of EMCV decreased from 7.75±0.35 log10TCID50/mL to 1.50 log10TCID50/mL within 24 h of starting the composting process. However, the activation of EMCV was not decreased (from 7.75±0.35 to 7.50±0.71 log10TCID50/mL) in the control treatment (not inserted in composts) after 168h, while the activation of H9N2 in dialysis cassettes was significantly decreased (from 6.25±0.35 log10TCID50/mL to 2.00±0.6 log10TCID50/mL). Our study demonstrated the effectiveness of the composting treatment in inactivating the viruses studied, which was not the case with air treatment.

5.
Data Brief ; 22: 227-233, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30581932

ABSTRACT

Burial of infectious and potentially infectious livestock and poultry animals is the most common response to an emergency situation. The data set summarizes 22-week-long experiment that simulates the environment found within conventional burial trenches for emergency disposal of animal carcasses, worldwide, sometimes with a topical application of quicklime as it is required in the Republic of Korea. This data set shows the rarely presented evidence of the extremely slow decay of animal carcasses. Besides visual evidence of no visible breakdown of carcass material, i.e., carcass (or carcass quarters and coarse cuts) still resembled the initial material at the end of the study, we present data characterizing the process. Specifically, temporal variations of digestate quality (pH, ammonia, volatile fatty acids), biogas production, and the persistence of odorous volatile organic compounds are summarized. The data provide important evidence of undesirable, slow progression of the digestion process. The evidence of failure to achieve practical endpoints with the anaerobic digestion provides the impetus for seeking alternative, improved methods of disposal that will be feasible in emergency context, such as aerated burial concept (Koziel et al., 2018 [1]).

6.
Waste Manag ; 76: 715-726, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29548829

ABSTRACT

Nearly 55,000 outbreaks of animal disease were reported to the World Animal Health Information Database between 2005 and 2016. To suppress the spread of disease, large numbers of animal mortalities often must be disposed of quickly and are frequently buried on the farm where they were raised. While this method of emergency disposal is fast and relatively inexpensive, it also can have undesirable and lasting impacts (slow decay, concerns about groundwater contamination, pathogens re-emergence, and odor). Following the 2010 foot-and-mouth disease outbreak, the Republic of Korea's National Institute of Animal Science funded research on selected burial alternatives or modifications believed to have potential to reduce undesirable impacts of burial. One such modification involves the injection of air into the liquid degradation products from the 60-70% water from decomposing carcasses in lined burial trenches. Prior to prototype development in the field, a laboratory-scale study of aerated decomposition (AeD) of poultry carcasses was conducted to quantify improvements in time of carcass decomposition, reduction of potential groundwater pollutants in the liquid products of decomposition (since trench liners may ultimately leak), and reduction of odorous VOCs emitted during decomposition. Headspace gases also were monitored to determine the potential for using gaseous biomarkers in the aerated burial trench exhaust stream to monitor completion of the decomposition. Results of the lab-scale experiments show that the mass of chicken carcasses was reduced by 95.0 ±â€¯0.9% within 3 months at mesophilic temperatures (vs. negligible reduction via mesophilic anaerobic digestion typical of trench burial) with concomitant reduction of biochemical oxygen demand (BOD; 99%), volatile suspended solids (VSS; 99%), total suspended solids (TSS; 99%), and total ammonia nitrogen (TAN; 98%) in the liquid digestate. At week #7 BOD and TSS in digestate met the U.S. EPA standards for treated wastewater discharge to surface water. Salmonella and Staphylococcus were inactivated by the AeD process after week #1 and #3, respectively. Five gaseous biomarkers: pyrimidine; p-cresol; phenol; dimethyl disulfide; and dimethyl trisulfide; were identified and correlated with digestate quality. Phenol was the best predictor of TAN (R = 0.96), BOD (R = 0.92), and dissolved oxygen (DO) (R = -0.91). Phenol was also the best predictor populations of Salmonella (R = 0.95) and aerobes (R = 0.88). P-cresol was the best predictor for anaerobes (R = 0.88). The off-gas from AeD will require biofiltration or other odor control measures for a much shorter time than anaerobic decomposition. The lab-scale studies indicate that AeD burial has the potential to make burial a faster, safer, and more environmentally friendly method for emergency disposal and treatment of infectious animal carcasses and that this method should be further developed via prototype-scale field studies.


Subject(s)
Burial , Disease Outbreaks , Groundwater/microbiology , Refuse Disposal , Animals , Emergencies , Foot-and-Mouth Disease , Poultry , Republic of Korea , Time Factors , Zoonoses
7.
PLoS One ; 12(5): e0176825, 2017.
Article in English | MEDLINE | ID: mdl-28475586

ABSTRACT

Managing the disposal of infectious animal carcasses from routine and catastrophic disease outbreaks is a global concern. Recent research suggests that burial in lined and aerated trenches provides the rapid pathogen containment provided by burial, while reducing air and water pollution potential and the length of time that land is taken out of agricultural production. Survival of pathogens in the digestate remains a concern, however. A potential answer is a 'dual'-barrier approach in which ammonia is used as a secondary barrier treatment to reduce the risk of pathogen contamination when trench liners ultimately leak. Results of this study showed that the minimum inhibitory concentration (MIC) of NH3 is 0.1 M (~1,468 NH3-N mg/L), and 0.5 M NH3 (~7,340 NH3-N mg/L) for ST4232 & MRSA43300, respectively at 24 h and pH = 9±0.1 and inactivation was increased by increasing NH3 concentration and/or treatment time. Results for digestate treated with NH3 were consistent with the MICs, and both pathogens were completely inactivated within 24 h.


Subject(s)
Ammonia/pharmacology , Meat/microbiology , Methicillin-Resistant Staphylococcus aureus/drug effects , Salmonella typhimurium/drug effects , Animals , Communicable Diseases/epidemiology , Digestion , Disease Outbreaks
8.
Food Chem ; 232: 799-807, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28490143

ABSTRACT

A passive sampling method, using retracted solid-phase microextraction (SPME) - gas chromatography-mass spectrometry and time-weighted averaging, was developed and validated for tracking marker volatile organic compounds (VOCs) emitted during aerobic digestion of biohazardous animal tissue. The retracted SPME configuration protects the fragile fiber from buffeting by the process gas stream, and it requires less equipment and is potentially more biosecure than conventional active sampling methods. VOC concentrations predicted via a model based on Fick's first law of diffusion were within 6.6-12.3% of experimentally controlled values after accounting for VOC adsorption to the SPME fiber housing. Method detection limits for five marker VOCs ranged from 0.70 to 8.44ppbv and were statistically equivalent (p>0.05) to those for active sorbent-tube-based sampling. The sampling time of 30min and fiber retraction of 5mm were found to be optimal for the tissue digestion process.


Subject(s)
Biomarkers/analysis , Poultry , Animals , Gas Chromatography-Mass Spectrometry , Solid Phase Microextraction , Volatile Organic Compounds
9.
Asian-Australas J Anim Sci ; 29(5): 753-8, 2016 May.
Article in English | MEDLINE | ID: mdl-26954138

ABSTRACT

Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS's optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust's coarse particle size and bulking effect.

10.
Waste Manag ; 48: 483-491, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26611401

ABSTRACT

A passively-ventilated plastic-wrapped composting system initially developed for biosecure disposal of poultry mortalities caused by avian influenza was adapted and tested to assess its potential as an emergency disposal option for disease-related swine mortalities. Fresh air was supplied through perforated plastic tubing routed through the base of the compost pile. The combined air inlet and top vent area is ⩽∼1% of the gas exchange surface of a conventional uncovered windrow. Parameters evaluated included: (1) spatial and temporal variations in matrix moisture content (m.c.), leachate production, and matrix O2 concentrations; (2) extent of soft tissue decomposition; and (3) internal temperature and the success rate in achieving USEPA time/temperature (T) criteria for pathogen reduction. Six envelope materials (wood shavings, corn silage, ground cornstalks, ground oat straw, ground soybean straw, or ground alfalfa hay) and two initial m.c.'s (15-30% w.b. for materials stored indoors, and 45-65% w.b. to simulate materials exposed to precipitation) were tested to determine their effect on performance parameters (1-3). Results of triple-replicated field trials showed that the composting system did not accumulate moisture despite the 150kg carcass water load (65% of 225kg total carcass mass) released during decomposition. Mean compost m.c. in the carcass layer declined by ∼7 percentage points during 8-week trials, and a leachate accumulation was rare. Matrix O2 concentrations for all materials other than silage were ⩾10% using the equivalent of 2m inlet/vent spacing. In silage O2 dropped below 5% in some cases even when 0.5m inlet/vent spacing was used. Eight week soft tissue decomposition ranged from 87% in cornstalks to 72% in silage. Success rates for achievement of USEPA Class B time/temperature criteria ranged from 91% for silage to 33-57% for other materials. Companion laboratory biodegradation studies suggest that Class B success rates can be improved by slightly increasing envelope material m.c. Moistening initially dry (15% m.c.) envelope materials to 35% m.c. nearly doubled their heat production potential, boosting it to levels ⩾silage. The 'contradictory' silage test results showing high temperatures paired with slow soft tissue degradation are likely due to this material's high density, low gas permeability and low water vapor loss. While slow decomposition typically suggests low microbial activity and heat production, it does not rule out high internal temperatures if the heat produced is conserved. Occasional short-term odor releases during the first 2weeks of composting were associated with top-to-bottom gas flow which is contrary to the typical bottom-to-top flow typically observed in conventional compost piles. In cases where biosecurity concerns are paramount, results of this study show the plastic-wrapped passively-ventilated composting method to have good potential for above-ground swine mortality disposal.


Subject(s)
Biodegradation, Environmental , Oxygen/chemistry , Plastics/chemistry , Swine , Air , Analysis of Variance , Animal Diseases/prevention & control , Animals , Cold Temperature , Disease Outbreaks/veterinary , Gases , Hot Temperature , Odorants , Poultry , Seasons , Security Measures , Soil , Water/chemistry , Zea mays
11.
J Microbiol Biotechnol ; 22(10): 1330-5, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23075782

ABSTRACT

Foot and mouth disease (FMD) is one of the acute infectious diseases in hoofed and even-toed mammals, including pigs, and it occurs via acute infection by Aphthovirus. When FMD is suspected, animals around the location of origin are typically slaughtered and buried. Other methods such as rendering, composting, and incineration have not been verified in practice in Korea. After the FMD incident, the regular monitoring of the microbial community is required, as microorganisms greatly modify the characteristics of the ecosystem in which they live. This is the result of their metabolic activities causing chemical changes to take place in the surrounding environment. In this study, we investigated changes in the microbial community during a 24 week period with DNA extracts from leachate, formed by the decomposition of buried pigs at a laboratory test site, using denaturing gradient gel electrophoresis (DGGE) with a genomic DNA. Our results revealed that Bacteroides coprosuis, which is common in pig excreta, and Sporanaerobacter acetigenes, which is a sulfur-reduced microbe, were continuously observed. During the early stages (0~2 weeks) of tissue decomposition, Clostridium cochlearium, Fusobacterium ulcerans, and Fusobacterium sp., which are involved in skin decomposition, were also observed. In addition, various microbes such as Turicibacter sanguinis, Clostridium haemolyticum, Bacteroides propionicifaciens, and Comamonas sp. were seen during the later stages (16~24 weeks). In particular, the number of existing microbial species gradually increased during the early stages, including the exponential phase, decreased during the middle stages, and then increased again during the later stages. Therefore, these results indicate that the decomposition of pigs continues for a long period of time and leachate is created continuously during this process. It is known that leachate can easily flow into the neighboring environment, so a long-term management plan is needed in burial locations for FMD-infected animals.


Subject(s)
Biota , DNA, Bacterial/isolation & purification , Soil Microbiology , Swine , Animals , Bacterial Load , Bacteroides/genetics , Bacteroides/isolation & purification , Bacteroides/metabolism , Clostridium/genetics , Clostridium/isolation & purification , Clostridium/metabolism , DNA, Bacterial/genetics , Denaturing Gradient Gel Electrophoresis , Environmental Monitoring/methods , Foot-and-Mouth Disease Virus/pathogenicity , Phylogeny , Swine/microbiology , Swine/virology
12.
Bioresour Technol ; 102(3): 3599-602, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21084186

ABSTRACT

Monitoring specific volatile organic compounds (VOCs) as markers of biosecure carcass degradation is a promising method to test progress and completion of the composting process. The objective of this study was to test the feasibility of using existing aeration ducts in composting units as practical sampling locations. The secondary objective was to test the feasibility of using marker VOC concentrations in aeration ducts to elucidate information about airflow patterns inside composting units. Marker VOC concentrations were significantly higher in the upper aeration duct and this duct can typically be used to collect air samples instead of placing special air sampling probes inside the composting units. Occasionally, the airflow direction inside composting units can change. Marker VOC concentrations can be used to decide the airflow direction inside the composting units. In this study, higher VOC concentrations were measured from the upper aeration duct, and this duct was shown to be an outlet.


Subject(s)
Environmental Monitoring/instrumentation , Postmortem Changes , Soil/analysis , Soil/chemistry , Swine , Volatile Organic Compounds/analysis , Animals , Equipment Design , Equipment Failure Analysis
13.
Waste Manag ; 30(10): 1981-8, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20646921

ABSTRACT

Emergency mortality composting associated with a disease outbreak has special requirements to reduce the risks of pathogen survival and disease transmission. The most important requirements are to cover mortalities with biosecure barriers and avoid turning compost piles until the pathogens are inactivated. Temperature is the most commonly used parameter for assessing success of a biosecure composting process, but a decline in compost core temperature does not necessarily signify completion of the degradation process. In this study, gas concentrations of volatile organic compounds (VOCs) produced inside biosecure swine mortality composting units filled with six different cover/plant materials were monitored to test the state and completion of the process. Among the 55 compounds identified, dimethyl disulfide, dimethyl trisulfide, and pyrimidine were found to be marker compounds of the process. Temperature at the end of eight weeks was not found as an indicator of swine carcass degradation. However, gas concentrations of the marker compounds at the end of eight weeks were found to be related to carcass degradation. The highest gas concentrations of the marker compounds were measured for the test units with the lowest degradation (highest respiration rates). Dimethyl disulfide was found to be the most robust marker compound as it was detected from all composting units in the eighth week of the trial. Concentration of dimethyl disulfide decreased from a range of 290-4340 ppmv to 6-160 ppbv. Dimethyl trisulfide concentrations decreased to a range of below detection limit to 430 ppbv while pyrimidine concentrations decreased to a range of below detection limit to 13 ppbv.


Subject(s)
Death , Soil/chemistry , Swine , Volatile Organic Compounds/metabolism , Analysis of Variance , Animals , Disulfides/analysis , Gas Chromatography-Mass Spectrometry , Pyrimidines/analysis , Sulfides/analysis
14.
Bioresour Technol ; 101(1): 71-8, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19703766

ABSTRACT

Biosecure livestock mortality composting systems have been used to dispose of diseased livestock mortalities. In those types of system, visual inspection of carcass degradation is not possible and monitoring VOCs (volatile organic compounds) released by carcasses is a new approach to assess progress of the composting process. In this study, field-scale livestock mortality composting systems were simulated and a laboratory scale composting system with aerobic and anaerobic test units was designed to collect VOC samples from the headspace of decaying plant materials (70 g dry weight) and swine tissues (70 g dry weight) at controlled operating temperatures. Headspace samples were collected with SPME (solid phase microextraction) and analyzed by a GC-MS (gas chromatography-mass spectrometry) system. Among the 43 VOCs identified, dimethyl disulfide, dimethyl trisulfide, and pyrimidine were found to be marker compounds of the mortality composting process. These compounds were only found to be produced by decaying swine tissues but not produced by decaying plant materials. The highest marker VOC emissions were measured during the first three weeks, and VOCs were not detected after the 6th week of the process, which indicates degradation processes were completed and compost materials microbially stabilized (no additional VOC production). Results of respiration tests also showed that compost materials were stabilized. Results of this study can be useful for field-scale composting operations but more studies are needed to show the effects of size and aeration rate of the composting units.


Subject(s)
Cadaver , Gas Chromatography-Mass Spectrometry/methods , Odorants/analysis , Solid Phase Microextraction/methods , Swine , Volatile Organic Compounds/analysis , Animals , Soil
15.
J Agric Food Chem ; 57(13): 5658-64, 2009 Jul 08.
Article in English | MEDLINE | ID: mdl-19514732

ABSTRACT

In biosecure composting, animal mortalities are so completely isolated during the degradation process that visual inspection cannot be used to monitor progress or the process status. One novel approach is to monitor the volatile organic compounds (VOCs) released by decaying mortalities and to use them as biomarkers of the process status. A new method was developed to quantitatively analyze potential biomarkers--dimethyl disulfide, dimethyl trisulfide, pyrimidine, acetic acid, propanoic acid, 3-methylbutanoic acid, pentanoic acid, and hexanoic acid--from field-scale biosecure mortality composting units. This method was based on collection of air samples from the inside of biosecure composting units using portable pumps and solid phase microextraction (SPME). Among four SPME fiber coatings, 85 microm CAR/PDMS was shown to extract the greatest amount of target analytes during a 1 h sampling time. The calibration curves had high correlation coefficients, ranging from 96 to 99%. Differences between the theoretical concentrations and those estimated from the calibration curves ranged from 1.47 to 20.96%. Method detection limits of the biomarkers were between 11 pptv and 572 ppbv. The applicability of the prepared calibration curves was tested for air samples drawn from field-scale swine mortality composting test units. Results show that the prepared calibration curves were applicable to the concentration ranges of potential biomaker compounds in a biosecure animal mortality composting unit.


Subject(s)
Air/analysis , Soil/analysis , Volatile Organic Compounds/analysis , Animals , Biomarkers/analysis , Death
SELECTION OF CITATIONS
SEARCH DETAIL
...