Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(3): 2061-2069, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38196907

ABSTRACT

Microplastics adsorb toxic substances and act as a transport medium. When microplastics adsorbed with toxic substances accumulate in the body, the microplastics and the adsorbed toxic substances can cause serious diseases, such as cancer. This work aimed to develop a surface-enhanced Raman spectroscopy (SERS) detection method for surface-adsorbent toxic substances by forming gold nanogaps on microplastics using surface acoustic waves (SAWs). Polystyrene microparticles (PSMPs; 1 µm) and polycyclic aromatic hydrocarbons (PAHs), including pyrene, anthracene, and fluorene, were selected as microplastics and toxic substances, respectively. Gold nanoparticles (AuNPs; 50 nm) were used as a SERS agent. The Raman characteristic peaks of the PAHs adsorbed on the surface of PSMPs were detected, and the SERS intensity and logarithm of the concentrations of pyrene, anthracene, and fluorene showed a linear relationship (R2 = 0.98), and the limits of detection were 95, 168, and 195 nM, respectively. Each PAH was detected on the surface of PSMPs, which were adsorbed with toxic substances in a mixture of three PAHs, indicating that the technique can be used to elucidate mixtures of toxic substances. The proposed SERS detection method based on SAWs could sense toxic substances that were surface-adsorbed on microplastics and can be utilized to monitor or track pollutants in aquatic environments.

2.
Anal Chim Acta ; 1285: 342036, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38057052

ABSTRACT

BACKGROUND: Dopamine (DA), a vital neurotransmitter, plays a critical role in the human brain and relates to neuropsychiatric disorders such as Parkinson's disease and schizophrenia. Numerous studies have explored detection of such biomarkers through surface-enhanced Raman spectroscopy (SERS). However, most of the studies focused on SERS detection face significant challenges with plasmonic nanostructure development. Such challenges often include time-consuming processes, complex fabrication, specialized chemical labeling, poor reproducibility, and random hotspot generation. Therefore, the need for simple and rapid nanostructure development is evident in SERS. RESULTS: We propose an innovative SERS-active sensing technique for 50 nm silver nanoparticle (AgNP) clustering based on surface acoustic wave (SAW). When a 1 µL droplet of AgNP colloid is dispensed onto the SAW-propagation zone, the AgNP cluster is deposited after the droplet completely evaporates, developing plasmonic nanogaps for SERS hotspot caused by spherical AgNP aggregation. By optimizing the SAW system through the hydrophobic treatment and modulation of the operational power, the SAW-induced AgNP clustering showed densely packed AgNP within a dot-like configuration (∼2200 AgNP µm-2), effectively preventing particle welding. The characterization of 4-mercaptobenzoic acid as a probe analyte revealed that concentrations as low as 1.14 pM was detected using our SAW-SERS system under 785 nm laser excitation. Moreover, DA was detected up to 4.28 nM with a determination of 0.99 (R2). SIGNIFICANCE: This technique for AgNP clustering induced by SAW provides a rapid, in situ, label-free SERS sensing method with outstanding sensitivity and linearity. A mere act of dropping can create extensive plasmonic hotspots featuring nanogap of ∼1.5 nm. The SAW-induced AgNP clustering can serve as an ultrasensitive SERS-active substrate for diverse molecular detections, including neurotransmitter detection.


Subject(s)
Metal Nanoparticles , Spectrum Analysis, Raman , Humans , Spectrum Analysis, Raman/methods , Metal Nanoparticles/chemistry , Dopamine , Silver/chemistry , Reproducibility of Results , Neurotransmitter Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...