Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 29(19): 195602, 2018 May 11.
Article in English | MEDLINE | ID: mdl-29461257

ABSTRACT

Atomic layer-deposited (ALD) dielectric films on graphene usually show noncontinuous and rough morphology owing to the inert surface of graphene. Here, we demonstrate the deposition of thin and uniform ALD ZrO2 films with no seed layer on chemical vapor-deposited graphene functionalized by atmospheric oxygen plasma treatment. Transmission electron microscopy showed that the ALD ZrO2 films were highly crystalline, despite a low ALD temperature of 150 °C. The ALD ZrO2 film served as an effective passivation layer for graphene, which was shown by negative shifts in the Dirac voltage and the enhanced air stability of graphene field-effect transistors after ALD of ZrO2. The ALD ZrO2 film on the functionalized graphene may find use in flexible graphene electronics and biosensors owing to its low process temperature and its capacity to improve device performance and stability.

2.
Ultramicroscopy ; 161: 66-73, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26630069

ABSTRACT

We propose a method of producing a tungsten probe with high stiffness for atomic force microscopy (AFM) in order to acquire enhanced phase contrast images and efficiently perform lithography. A tungsten probe with a tip radius between 20nm and 50nm was fabricated using electrochemical etching optimized by applying pulse waves at different voltages. The spring constant of the tungsten probe was determined by finite element analysis (FEA), and its applicability as an AFM probe was evaluated by obtaining topography and phase contrast images of a Si wafer sample partly coated with Au. Enhanced hard tapping performance of the tungsten probe compared with a commercial Si probe was confirmed by conducting hard tapping tests at five different oscillation amplitudes on single layer graphene grown by chemical vapor deposition (CVD). To analyze the damaged graphene sample, the test areas were investigated using tip-enhanced Raman spectroscopy (TERS). The test results demonstrate that the tungsten probe with high stiffness was capable of inducing sufficient elastic and plastic deformation to enable obtaining enhanced phase contrast images and performing lithography, respectively.

3.
Adv Mater ; 27(13): 2252-9, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25677959

ABSTRACT

A novel, nanoscale, thickness-controlled, elastic graphene oxide-polydiallyldimethylammonium chloride (GO-PDDA) film using a layer-by-layer technique on silver nanowires and a flexible substrate is reported. Micro- and nanoscale wear and flexibility depending on the thickness and/or elastic nature of the overcoating layer demonstrate high mechanical stability with the PDDA inserted overcoating layer.

4.
Langmuir ; 20(23): 10046-54, 2004 Nov 09.
Article in English | MEDLINE | ID: mdl-15518492

ABSTRACT

Polymer surface layers comprised of mixed chains grafted to a functionalized silicon surface with a total layer thickness of only 1-3 nm are shown to exhibit reversible switching of their structure. Carboxylic acid-terminated polystyrene (PS) and poly (butyl acrylate) (PBA) were chemically attached to a silicon surface that was modified with an epoxysilane self-assembled monolayer by a "grafting to" routine. While one-step grafting resulted in large, submicron microstructures, a refined, two-step sequential grafting procedure allowed for extremely small spatial dimensions of PS and PBA domains. By adjusting the grafting parameters, such as concentration of each phase and molecular weight, very finely structured surfaces resulted with roughly 10-nm phase domains and less than 0.5-nm roughness. Combining the glassy PS and the rubbery PBA, we implemented a design approach to fabricate a mixed brush from two immiscible polymers so that switching of the surface nanomechanical properties is possible. Post-grafting hydrolysis converted PBA to poly(acrylic acid) to amplify this switching in surface wettability. Preliminary tribological studies showed a difference in wear behavior of glassy and rubbery surface layers. Such switchable coatings have practical applications as surface modifications of complex nanoscale electronic devices and sensors, which is why we restricted total thickness for potential nanoscale gaps.

SELECTION OF CITATIONS
SEARCH DETAIL
...