Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 9(7): 1837-41, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11425585

ABSTRACT

We have attempted to design a model dipeptide (acetyl dipeptide amide, Ac-CA1-CA2--NH(2)) that can adopt specifically typical torsion angles of the beta-I turn (phi(i+1), psi(i+1), phi(i+2), psi(i+2)=-60 degrees, -30 degrees, -90 degrees, 0 degrees ). The key of the design is the combination of constrained amino acids that prefer to adopt the desired torsion angles. We chose Aib (aminoisobutyric acid) as the first residue of which phi and psi angles must be -60 degrees and -30 degrees, respectively. Then, we selected an azaamino acid as the second residue since previous studies have indicated that they prefer to adopt +/-90 degrees of phi angle and 0 degrees or 180 degrees of psi angle. The conformational preference of the resulting Ac-Aib-AzGly--NH(2) is investigated using ab initio methods. The conformations implying beta-I and beta-I' turns are energetically most favorable, as we expected. Thus, we synthesized the designed molecule on the solid phase considering the future generation of combinatorial libraries using an automatic peptide synthesizer. Then, NMR spectroscopy was carried out to confirm their conformational preference in solution was carried out. The results indicated that the Ac-Aib-AzGly--NH(2) adopt beta-I or beta-I' turns in solution forming an intramolecular hydrogen bonding between Ac--C(O) and terminal NH(2). We believe that such a small peptidomimetic template is highly useful for the design of drug candidates and molecular devices.


Subject(s)
Dipeptides/chemistry , Molecular Mimicry , Dipeptides/chemical synthesis , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Secondary
2.
J Pept Res ; 56(1): 35-46, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10917455

ABSTRACT

The structural perturbation induced by C(alpha)-->N(alpha) exchange in azaamino acid-containing peptides was predicted by ab initio calculation of the 6-31G* and 3-21G* levels. The global energy-minimum conformations for model compounds, For-azaXaa-NH2 (Xaa=Gly, Ala, Leu) appeared to be the beta-turn motif with a dihedral angle of phi= +/- 90 degrees, psi=0 degrees. This suggests that incorporation of the azaXaa residue into the i+2 position of designed peptides could stabilize the beta-turn structure. The model azaLeu-containing peptide, Boc-Phe-azaLeu-Ala-OMe, which is predicted to adopt a beta-turn conformation was designed and synthesized in order to experimentally elucidate the role of the azaamino acid residue. Its structural preference in organic solvents was investigated using 1H NMR, molecular modelling and IR spectroscopy. The temperature coefficients of amide protons, the characteristic NOE patterns, the restrained molecular dynamics simulation and IR spectroscopy defined the dihedral angles [ (phi i+1, psi i+1) (phi i+2, psi i+2)] of the Phe-azaLeu fragment in the model peptide, Boc-Phe-azaLeu-Ala-OMe, as [(-59 degrees, 127 degrees) (107 degrees, -4 degrees)]. This solution conformation supports a betaII-turn structural preference in azaLeu-containing peptides as predicted by the quantum chemical calculation. Therefore, intercalation of the azaamino acid residue into the i+2 position in synthetic peptides is expected to provide a stable beta-turn formation, and this could be utilized in the design of new peptidomimetics adopting a beta-turn scaffold.


Subject(s)
Aza Compounds/chemical synthesis , Oligopeptides/chemical synthesis , Aza Compounds/chemistry , Aza Compounds/metabolism , Dipeptides/chemistry , Drug Design , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Models, Chemical , Models, Molecular , Molecular Structure , Oligopeptides/chemistry , Oligopeptides/metabolism , Protein Structure, Secondary , Solvents/chemistry , Spectroscopy, Fourier Transform Infrared , Temperature
3.
Mol Divers ; 4(1): 23-4, 1998.
Article in English | MEDLINE | ID: mdl-10320985

ABSTRACT

Peptides containing azaglycine located terminally or within the backbone have been prepared in the solid phase by means of an automatic synthesizer.


Subject(s)
Aza Compounds/chemical synthesis , Glycine/chemistry , Peptide Biosynthesis , Drug Design
SELECTION OF CITATIONS
SEARCH DETAIL
...