Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 249: 118437, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38346486

ABSTRACT

The widespread prevalence of micro and nanoplastics in the environment raises concerns about their potential impact on human health. Recent evidence demonstrates the presence of nanoplastics in human blood and tissues following ingestion and inhalation, yet the specific risks and mechanisms of nanoplastic toxicity remain inadequately understood. In this study, we aimed to explore the molecular mechanisms underlying the toxicity of nanoplastics at both systemic and molecular levels by analyzing the transcriptomic/metabolomic responses and signaling pathways in the intestines of mice after oral administration of nanoplastics. Transcriptome analysis in nanoplastic-administered mice revealed a notable upregulation of genes involved in pro-inflammatory immune responses. In addition, nanoplastics substantially reduced the expression of tight junction proteins, including occludin, zonula occluden-1, and tricellulin, which are crucial for maintaining gut barrier integrity and function. Importantly, nanoplastic administration increased gut permeability and exacerbated dextran sulfate sodium-induced colitis. Further investigation into the underlying molecular mechanisms highlighted significant activation of signaling transsducer and activator of transcription (STAT)1 and STAT6 by nanoplastic administration, which was in line with the elevation of interferon and JAK-STAT pathway signatures identified through transcriptome enrichment analysis. Additionally, the consumption of nanoplastics specifically induced nuclear factor kappa-B (NF-κB) and extracellular signal-regulated kinase (ERK)1/2 signaling pathways in the intestines. Collectively, this study identifies molecular mechanisms contributing to adverse effects mediated by nanoplastics in the intestine, providing novel insights into the pathophysiological consequences of nanoplastic exposure.


Subject(s)
STAT1 Transcription Factor , Animals , Mice , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Transcriptome/drug effects , MAP Kinase Signaling System/drug effects , STAT6 Transcription Factor/metabolism , STAT6 Transcription Factor/genetics , Mice, Inbred C57BL , Nanoparticles/toxicity , Metabolomics , Male , Colitis/chemically induced , Colitis/metabolism
2.
Mol Nutr Food Res ; 65(14): e2000652, 2021 07.
Article in English | MEDLINE | ID: mdl-33932312

ABSTRACT

SCOPE: γ-Oryzanol, a well-known antioxidant, has been used by body builders and athletes to boost strength and increase muscle gain, without major side effects. However, the effect of γ-Oryzanol on sarcopenia and the underlying molecular mechanism is poorly understood. RESULTS: Aged mice fed with the γ-Oryzanol diet do not show significant changes in muscle weight, but show increased running endurance as well as improved grip strength. The expression and activity of PPARδ and ERRγ are increased in skeletal muscle of γ-Oryzanol supplemented mice. γ-Oryzanol upregulates oxidative muscle fibers by MEF2 transcription factor, and PGC-1α and ERRα expressions. Fatty acid oxidation related genes and mitochondria biogenesis are upregulated by γ-Oryzanol. In addition, γ-Oryzanol inhibits TGF-ß-Smad-NADPH oxidase 4 pathway and inflammatory cytokines such as TNF-α, IL-1ß, IL-6, and p65 NF-κB subunit, which cause skeletal muscle weakness. Collectively, γ-Oryzanol attenuates muscle weakness pathway and increases oxidative capacity by increasing PPARδ and ERRγ activity, which contributes to enhance strength and improve oxidative capacity in muscles, consequently enhancing exercise capacity in aged mice. Particularly, γ-Oryzanol directly binds to PPARδ. CONCLUSIONS: These are the first findings showing that γ-Oryzanol enhances skeletal muscle function in aged mice by regulating PPARδ and ERRγ activity without muscle gain.


Subject(s)
Aging , PPAR delta/metabolism , Phenylpropionates/pharmacology , Physical Conditioning, Animal , Receptors, Estrogen/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , Mitochondria, Muscle , Muscle Strength , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Organelle Biogenesis , Physical Endurance , ERRalpha Estrogen-Related Receptor
3.
Food Chem ; 353: 129463, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33743428

ABSTRACT

Codium fragile (CF) is a type of green algae consumed as kimchi in Asia. UPLC-QTOF-MS/MS analysis showed that CF contain lysophosphatidyl choline, canthaxanthin, retinoic acid, α-tocopherol, and unsaturated fatty acids, which reportedly improve skeletal muscle health. However, the effect of CF on skeletal muscle mass and function remains to be elucidated. In mice fed with CF extracts, exercise endurance and muscle weight increased. CF extracts enhanced protein synthesis and myogenic differentiation through the mTORC1 pathway. CF extracts also promoted oxidative muscle fiber formation and mitochondrial biogenesis through the PGC-1α-related signaling pathway. Upregulation of PGC-1α by CF extracts was abolished by EX527 SIRT1 inhibitor treatment. Changed signaling molecules in the CF extracts were partially regulated by canthaxanthin, a new compound in CF extracts, suggesting that canthaxanthin contribute synergistically to the effect of CF extracts. Therefore, CF is a potential food source for sport nutrition or prevention of sarcopenia.


Subject(s)
Chlorophyta/chemistry , Muscle, Skeletal/drug effects , Physical Endurance/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Animals , Canthaxanthin/analysis , Carbazoles/pharmacology , Male , Mice, Inbred C57BL , Muscle, Skeletal/physiology , Organ Size/drug effects , Organelle Biogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Physical Conditioning, Animal/physiology , Physical Endurance/physiology , Plant Extracts/analysis , Seaweed/chemistry , Signal Transduction/drug effects , Tandem Mass Spectrometry , Up-Regulation/drug effects
4.
FASEB J ; 34(6): 8068-8081, 2020 06.
Article in English | MEDLINE | ID: mdl-32293073

ABSTRACT

Dietary habits can alter the skeletal muscle performance and mass, and Undaria pinnatifida extracts are considered a potent candidate for improving the muscle mass and function. Therefore, in this study, we aimed to assess the effect of U pinnatifida extracts on exercise endurance and skeletal muscle mass. C57BL/6 mice were fed a 0.25% U pinnatifida extract-containing diet for 8 weeks. U pinnatifida extract-fed mice showed increased running distance, total running time, and extensor digitorum longus and gastrocnemius muscle weights. U pinnatifida extract supplementation upregulated the expression of myocyte enhancer factor 2C, oxidative muscle fiber markers such as myosin heavy chain 1 (MHC1), and oxidative biomarkers in the gastrocnemius muscles. Compared to the controls, U pinnatifida extract-fed mice showed larger mitochondria and increased gene and protein expression of molecules involved in mitochondrial biogenesis and oxidative phosphorylation, including nuclear respiratory factor 2 and mitochondrial transcription factor A. U pinnatifida extract supplementation also increased the mRNA expression of angiogenesis markers, including VEGFa, VEGFb, FGF1, angiopoietin 1, and angiopoietin 2, in the gastrocnemius muscles. Importantly, U pinnatifida extracts upregulated the estrogen-related receptor γ and peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α)/AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) networks, which are partially increased by fucoxanthin, hesperetin, and caffeic acid treatments. Collectively, U pinnatifida extracts enhance mitochondrial biogenesis, increase oxidative muscle fiber, and promote angiogenesis in skeletal muscles, resulting in improved exercise capacity and skeletal muscle mass. These effects are attributable to fucoxanthin, hesperetin, and caffeic acid, bioactive components of U pinnatifida extracts.


Subject(s)
Muscle, Skeletal/drug effects , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Physical Conditioning, Animal/physiology , Physical Endurance/drug effects , Plant Extracts/pharmacology , Undaria/chemistry , AMP-Activated Protein Kinases/metabolism , Animals , Biomarkers/metabolism , Cell Line , DNA-Binding Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Muscle, Skeletal/metabolism , Muscular Diseases/drug therapy , Muscular Diseases/metabolism , Organelle Biogenesis , Oxidative Phosphorylation/drug effects , Sirtuin 1/metabolism , Transcription Factors/metabolism
5.
Mol Nutr Food Res ; 63(17): e1801149, 2019 09.
Article in English | MEDLINE | ID: mdl-31120170

ABSTRACT

SCOPE: Skeletal muscle mass and quality can be negatively affected by aging, inactivity, and disease, while a loss of muscle mass is associated with chronic disease status, falls, and mortality. We investigate the effects of Hydrangea serrata on skeletal muscle mass and function, along with the underlying mechanisms. METHODS AND RESULTS: H. serrata, identified through MyoD transcription activity screening, increases myogenic differentiation via Akt and p38. C57BL/6 mice are fed a 0.25% or 0.5% H. serrata diet for 8 weeks. H. serrata increased treadmill running distance and maximum speed, as well as skeletal muscle mass. H. serrata promotes the expression of myosin heavy chain 1 (MHC1) and MHC2A but not MHC2B. H. serrata also upregulates the protein expression of peroxisome proliferator-activated receptor δ (PPARδ) and mitochondrial complexes, and enhances citrate synthase and mitochondrial complex І activity. Transforming growth factor-ß (TGF-ß), myostatin, and growth differentiation factor 11 (GDF11) are attenuated by H. serrata, together with associated downstream signaling factors including phospho-Smad3 and NADPH oxidase 4 (NOX4). CONCLUSION: H. serrata enhances exercise endurance by upregulating PPARδ and downregulating TGF-ß, myostatin, and GDF11. H. serrata is a potential candidate for the development of functional food to maintain skeletal muscle mass and function.


Subject(s)
Hydrangea , Muscle, Skeletal/physiology , Physical Endurance/physiology , Teas, Herbal , Animals , Cell Differentiation , Cell Line , Citrate (si)-Synthase/metabolism , Gene Expression Regulation/drug effects , Male , Mice, Inbred C57BL , MyoD Protein/metabolism , Myoblasts, Skeletal/cytology , Myoblasts, Skeletal/drug effects , PPAR delta/metabolism , Physical Conditioning, Animal , Proto-Oncogene Proteins c-akt/metabolism , Running
SELECTION OF CITATIONS
SEARCH DETAIL
...