Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38891384

ABSTRACT

Rapeseed (Brassica napus L.) holds significant commercial value as one of the leading oil crops, with its agronomic features and oil quality being crucial determinants. In this investigation, 73,226 single nucleotide polymorphisms (SNPs) across 95 rapeseed mutant lines induced by gamma rays, alongside the original cultivar ('Tamra'), using genotyping-by-sequencing (GBS) analysis were examined. This study encompassed gene ontology (GO) analysis and a genomewide association study (GWAS), thereby concentrating on agronomic traits (e.g., plant height, ear length, thousand-seed weight, and seed yield) and oil traits (including fatty acid composition and crude fat content). The GO analysis unveiled a multitude of genes with SNP variations associated with cellular processes, intracellular anatomical structures, and organic cyclic compound binding. Through GWAS, we detected 320 significant SNPs linked to both agronomic (104 SNPs) and oil traits (216 SNPs). Notably, two novel candidate genes, Bna.A05p02350D (SFGH) and Bna.C02p22490D (MDN1), are implicated in thousand-seed weight regulation. Additionally, Bna.C03p14350D (EXO70) and Bna.A09p05630D (PI4Kα1) emerged as novel candidate genes associated with erucic acid and crude fat content, respectively. These findings carry implications for identifying superior genotypes for the development of new cultivars. Association studies offer a cost-effective means of screening mutants and selecting elite rapeseed breeding lines, thereby enhancing the commercial viability of this pivotal oil crop.

2.
Plants (Basel) ; 13(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38256802

ABSTRACT

Kenaf (Hibiscus cannabinus L.), in the Malvaceae family, is an important crop for not only fiber production, but also various other industrial materials. We performed phylogenetic analysis and a genome-wide association study (GWAS) of seven agronomic traits: days to flowering, plant height, fresh weight, dry weight, flower color, stem color, and leaf shape, using 96 kenaf genotypes, including gamma-irradiation-derived mutant lines. Genotypes were determined by genotyping-by-sequencing (GBS) and a total of 49,241 single-nucleotide polymorphisms (SNPs) were used in the analysis. Days to flowering, plant height, fresh weight, and dry weight were positively correlated with each other, and stem color was also correlated with fresh weight and dry weight. The phylogenetic analysis divided the 96 lines into nine related groups within two independent groups, and the GWAS analysis detected a total of 49 SNPs for days to flowering, plant height, fresh weight, dry weight, flower color, stem color, and leaf shape with -log10(P) ≥ 4, of which 22 were located in genic regions. The detected SNPs were located in genes with homology ranging from 45% to 96% to plants of the Malvaceae and Betulaceae, and these genes were found to be involved in plant growth and development via various pathways. Our identification of SNP markers related to agronomic traits is expected to help improve the quality of selective breeding programs for kenaf.

3.
Sensors (Basel) ; 23(18)2023 Sep 17.
Article in English | MEDLINE | ID: mdl-37766003

ABSTRACT

Accurately estimating the pose of a vehicle is important for autonomous parking. The study of around view monitor (AVM)-based visual Simultaneous Localization and Mapping (SLAM) has gained attention due to its affordability, commercial availability, and suitability for parking scenarios characterized by rapid rotations and back-and-forth movements of the vehicle. In real-world environments, however, the performance of AVM-based visual SLAM is degraded by AVM distortion errors resulting from an inaccurate camera calibration. Therefore, this paper presents an AVM-based visual SLAM for autonomous parking which is robust against AVM distortion errors. A deep learning network is employed to assign weights to parking line features based on the extent of the AVM distortion error. To obtain training data while minimizing human effort, three-dimensional (3D) Light Detection and Ranging (LiDAR) data and official parking lot guidelines are utilized. The output of the trained network model is incorporated into weighted Generalized Iterative Closest Point (GICP) for vehicle localization under distortion error conditions. The experimental results demonstrate that the proposed method reduces localization errors by an average of 39% compared with previous AVM-based visual SLAM approaches.

4.
Bioresour Technol ; 387: 129546, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37488011

ABSTRACT

This study identified an endosymbiotic bacterium, Bacillus tequilensis, residing within the cells of the microalga Haematococcus lacustris through 16S rRNA analysis. To confirm the optimal interactive conditions between H. lacustris and B. tequilensis, the effects of different ratios of cells using H. lacustris of different growth stages were examined. Under optimized conditions, the cell density, dry weight, chlorophyll content, and astaxanthin content of H. lacustris increased significantly, and the fatty acid content improved 1.99-fold. Microscopy demonstrated the presence of bacteria within the H. lacustris cells. The interaction upregulated amino acid and nucleotide metabolism in H. lacustris. Interestingly, muramic and phenylacetic acids were found exclusively in H. lacustris cells in the presence of B. tequilensis. Furthermore, B. tequilensis delayed pigment degradation in H. lacustris. This study reveals the impact of the endosymbiont B. tequilensis on the metabolism of H. lacustris and offers new perspectives on the symbiotic relationship between them.


Subject(s)
Chlorophyceae , Microalgae , Endophytes , RNA, Ribosomal, 16S/genetics , Bacteria
5.
Sci Rep ; 12(1): 21285, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36494372

ABSTRACT

Semi-structured environments are difficult for autonomous driving because there are numerous unknown obstacles in drivable area without lanes, and its width and curvature considerably change. In such environments, searching for a path on a real-time is difficult, and localization data are inaccurate, reducing path tracking accuracy. Instead, alternative methods that reactively avoid obstacles in real-time using candidate paths or an artificial potential field have been studied. However, these require heuristics to identify specific parameters for handling various environments and are vulnerable to inaccurate input data. To address these limitations, this study proposes a method in which a vehicle drives toward drivable area using vision and deep learning. The proposed imitation learning method learns the look-ahead point where the vehicle should reach on a vision-based occupancy grid map to obtain a safe policy with a clear state action pattern relationship. Furthermore, using this point, the data aggregation (DAgger) algorithm with weighted loss function is proposed, which imitates expert behavior more accurately, especially in unsafe or near-collision situations. Experimental results in actual semi-structured environments demonstrated the limitations of general model-based methods and the effectiveness of the proposed imitation learning method. Moreover, simulation experiments showed that DAgger with the weight obtains a safer policy than existing DAgger algorithms.

6.
Front Plant Sci ; 13: 968466, 2022.
Article in English | MEDLINE | ID: mdl-36061785

ABSTRACT

Isoflavones are major secondary metabolites that are exclusively produced by legumes, including soybean. Soy isoflavones play important roles in human health as well as in the plant defense system. The isoflavone content is influenced by minor-effect quantitative trait loci, which interact with polygenetic and environmental factors. It has been difficult to clarify the regulation of isoflavone biosynthesis because of its complex heritability and the influence of external factors. Here, using a genotype-by-sequencing-based genome-wide association mapping study, 189 mutant soybean genotypes (the mutant diversity pool, MDP) were genotyped on the basis of 25,646 high-quality single nucleotide polymorphisms (SNPs) with minor allele frequency of >0.01 except for missing data. All the accessions were phenotyped by determining the contents of 12 isoflavones in the soybean seeds in two consecutive years (2020 and 2021). Then, quantitative trait nucleotides (QTNs) related to isoflavone contents were identified and validated using multi-locus GWAS models. A total of 112 and 46 QTNs related to isoflavone contents were detected by multiple MLM-based models in 2020 and 2021, respectively. Of these, 12 and 5 QTNs were related to more than two types of isoflavones in 2020 and 2021, respectively. Forty-four QTNs were detected within the 441-Kb physical interval surrounding Gm05:38940662. Of them, four QTNs (Gm05:38936166, Gm05:38936167, Gm05:38940662, and Gm05:38940717) were located at Glyma.05g206900 and Glyma.05g207000, which encode glutathione S-transferase THETA 1 (GmGSTT1), as determined from previous quantitative trait loci annotations and the literature. We detected substantial differences in the transcript levels of GmGSTT1 and two other core genes (IFS1 and IFS2) in the isoflavone biosynthetic pathway between the original cultivar and its mutant. The results of this study provide new information about the factors affecting isoflavone contents in soybean seeds and will be useful for breeding soybean lines with high and stable concentrations of isoflavones.

7.
Int J Mol Sci ; 23(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36142354

ABSTRACT

In this study, we performed a genotyping-by-sequencing analysis and a genome-wide association study of a soybean mutant diversity pool previously constructed by gamma irradiation. A GWAS was conducted to detect significant associations between 37,249 SNPs, 11 agronomic traits, and 6 phytochemical traits. In the merged data set, 66 SNPs on 13 chromosomes were highly associated (FDR p < 0.05) with the following 4 agronomic traits: days of flowering (33 SNPs), flower color (16 SNPs), node number (6 SNPs), and seed coat color (11 SNPs). These results are consistent with the findings of earlier studies on other genetic features (e.g., natural accessions and recombinant inbred lines). Therefore, our observations suggest that the genomic changes in the mutants generated by gamma irradiation occurred at the same loci as the mutations in the natural soybean population. These findings are indicative of the existence of mutation hotspots, or the acceleration of genome evolution in response to high doses of radiation. Moreover, this study demonstrated that the integration of GBS and GWAS to investigate a mutant population derived from gamma irradiation is suitable for dissecting the molecular basis of complex traits in soybeans.


Subject(s)
Genome-Wide Association Study , Glycine max , Chromosome Mapping , Genome, Plant , Genotype , Linkage Disequilibrium , Mutation , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Glycine max/genetics
8.
Bioresour Technol ; 360: 127525, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35760247

ABSTRACT

In this study, ultrasonication at a frequency of 40 kHz was used to shorten the sonication period and enhance the growth of Haematococcus lacustris. To confirm the optimal conditions, the effects of ultrasound output and treatment interval were examined. Under optimal conditions (20 W and 15-day cycle), the maximum cell density and chlorophyll content were 66.75 × 104 cells mL-1 and 36.54 mg g-1, respectively, which were increased by 50.00% and 39.01%, respectively, compared to the control. Transmission electron microscopy analysis showed that ultrasonication caused tiny cracks in the W4 and W6 strata but did not disrupt the inner W2 layer. Additionally, RT-qPCR analysis showed that ultrasonication upregulated both cell division and nitrogen uptake. No difference were detected in the composition or quantity of fatty acids. This study demonstrates a novel ultrasonic approach for enhancing the growth of H. lacustris.


Subject(s)
Chlorophyceae , Ultrasonic Therapy , Chlorophyll , Fatty Acids , Sonication
9.
Plants (Basel) ; 11(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35406848

ABSTRACT

Salinity stress is one of the most important abiotic stresses that causes great losses in crop production worldwide. Identifying the molecular mechanisms of salt resistance in sorghum will help develop salt-tolerant crops with high yields. Sorghum (Sorghum bicolor (L.) Moench) is one of the world's four major grains and is known as a plant with excellent adaptability to salt stress. Among the various genotypes of sorghum, a Korean cultivar Nampungchal is also highly tolerant to salt. However, little is known about how Nampungchal responds to salt stress. In this study, we measured various physiological parameters, including Na+ and K+ contents, in leaves grown under saline conditions and investigated the expression patterns of differentially expressed genes (DEGs) using QuantSeq analysis. These DEG analyses revealed that genes up-regulated in a 150 mM NaCl treatment have various functions related to abiotic stresses, such as ERF and DREB. In addition, transcription factors such as ABA, WRKY, MYB, and bZip bind to the CREs region of sorghum and are involved in the regulation of various abiotic stress-responsive transcriptions, including salt stress. These findings may deepen our understanding of the mechanisms of salt tolerance in sorghum and other crops.

10.
Plants (Basel) ; 11(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35009138

ABSTRACT

In this study, we investigated the phenolic compounds in hop strobile extracts and evaluated their antioxidant property using DPPH and ABTS assay. The total phenolic compound (TPC) and total flavonoid compound (TFC) estimated in two different solvent extracts considerably varied depending on the extraction solvent. The most abundant phenolic compound in hop strobile was humulones (α-acid) with levels ranging from 50.44 to 193.25 µg/g. El Dorado accession revealed higher antioxidant activity in ethanol extracts (DPPH: IC50 124.3 µg/mL; ABTS: IC50 95.4 µg/mL) when compared with that of the other accessions. Correlations between DPPH (IC50) scavenging TFC in ethanol extract (TFC_E, -0.941), and TPC_E (-0.901), and between ABTS (IC50) scavenging TFC_E (-0.853), and TPC_E (-0.826), were statistically significant at p < 0.01 level, whereas no significant correlation was observed between antioxidant activities, TPC and TFC in water extract. This study is the first to report that variations in the level of phenolic contents and antioxidant activity of various hop cultivars depended on the type of extraction solvent used and the cultivation regions. These results could provide valuable information on developing hop products.

11.
Front Plant Sci ; 12: 752108, 2021.
Article in English | MEDLINE | ID: mdl-34777430

ABSTRACT

Protons may have contributed to the evolution of plants as a major component of cosmic-rays and also have been used for mutagenesis in plants. Although the mutagenic effect of protons has been well-characterized in animals, no comprehensive phenotypic and genomic analyses has been reported in plants. Here, we investigated the phenotypes and whole genome sequences of Arabidopsis M2 lines derived by irradiation with proton beams and gamma-rays, to determine unique characteristics of proton beams in mutagenesis. We found that mutation frequency was dependent on the irradiation doses of both proton beams and gamma-rays. On the basis of the relationship between survival and mutation rates, we hypothesized that there may be a mutation rate threshold for survived individuals after irradiation. There were no significant differences between the total mutation rates in groups derived using proton beam or gamma-ray irradiation at doses that had similar impacts on survival rate. However, proton beam irradiation resulted in a broader mutant phenotype spectrum than gamma-ray irradiation, and proton beams generated more DNA structural variations (SVs) than gamma-rays. The most frequent SV was inversion. Most of the inversion junctions contained sequences with microhomology and were associated with the deletion of only a few nucleotides, which implies that preferential use of microhomology in non-homologous end joining was likely to be responsible for the SVs. These results show that protons, as particles with low linear energy transfer (LET), have unique characteristics in mutagenesis that partially overlap with those of low-LET gamma-rays and high-LET heavy ions in different respects.

12.
Front Plant Sci ; 12: 719846, 2021.
Article in English | MEDLINE | ID: mdl-34512699

ABSTRACT

The enzyme phosphoribosyl pyrophosphate synthase (PRPS) catalyzes the conversion of ribose 5-phosphate into phosphoribosyl diphosphate; the latter is a precursor of purine and pyrimidine nucleotides. Here, we investigated the function of PRPS from the single-celled green alga Chlamydomonas reinhardtii in its response to DNA damage from gamma radiation or the alkylating agent LiCl. CrPRPS transcripts were upregulated in cells treated with these agents. We generated CrPRPS-overexpressing transgenic lines to study the function of CrPRPS. When grown in culture with LiCl or exposed to gamma radiation, the transgenic cells grew faster and had a greater survival rate than wild-type cells. CrPRPS overexpression enhanced expression of genes associated with DNA damage response, namely RAD51, RAD1, and LIG1. We observed, from transcriptome analysis, upregulation of genes that code for key enzymes in purine metabolism, namely ribonucleoside-diphosphate pyrophosphokinase subunit M1, adenylate kinase, and nucleoside-diphosphate kinase. We conclude that CrPRPS may affect DNA repair process via regulation of de novo nucleotide synthesis.

13.
Mol Biol Rep ; 48(9): 6387-6400, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34426904

ABSTRACT

BACKGROUND: Perilla frutescens (Lamiaceae) is distributed in East Asia and is classified into var. frutescens and crispa. P. frutescens is multipurpose crop for human health because of a variety of secondary metabolites such as phenolic compound and essential oil. However, a lack of genetic information has hindered the development and utilization of Perilla genotypes. METHODS AND RESULTS: This study was performed to develop expressed sequence tag-simple sequence repeat (EST-SSR) markers from P. frutescens var. crispa (wild type) and Antisperill (a mutant cultivar) and used them to assess the genetic diversity of, and relationships among, 94 P. frutescens genotypes. We obtained 65 Gb of sequence data comprising 632,970 transcripts by de novo RNA-sequencing. Of the 14,780 common SSRs, 102 polymorphic EST-SSRs were selected using in silico polymerase chain reaction (PCR). Overall, successful amplification from 58 EST-SSRs markers revealed remarkable genetic diversity and relationships among 94 P. frutescens genotypes. In total, 268 alleles were identified, with an average of 4.62 alleles per locus (range 2-11 alleles/locus). The average polymorphism information content (PIC) value was 0.50 (range 0.04-0.86). In phylogenetic and population structure analyses, the genotypes formed two major groups: Group I (var. crispa) and Group II (var. frutescens). CONCLUSION: This results suggest that 58 novel EST-SSR markers derived from wild-type cultivar (var. crispa) and its mutant cultivar (Antisperill) have potential uses for population genetics and recombinant inbred line mapping analyses, which will provide comprehensive insights into the genetic diversity and relationship of P. frutescens.


Subject(s)
Expressed Sequence Tags , Microsatellite Repeats/genetics , Mutation , Perilla frutescens/genetics , Polymorphism, Genetic , Transcriptome/genetics , Alleles , Crops, Agricultural/genetics , Genetic Loci , Genotype , Phylogeny , RNA-Seq/methods
14.
Methods Mol Biol ; 2250: 195-205, 2021.
Article in English | MEDLINE | ID: mdl-33900606

ABSTRACT

Transposable elements (TEs) are ubiquitous repetitive components of eukaryotic organisms that show mobility in the genome against diverse stresses. TEs contribute considerably to the size, structure, and plasticity of genomes and also play an active role in genome evolution by helping their hosts adapt to novel conditions by conferring useful characteristics. We developed a simple and rapid method for investigation of genetic mobility and diversity among TEs in combination with a target region amplification polymorphism (TE-TRAP) marker system in gamma-irradiated sorghum mutants. The TE-TRAP marker system reveals a high level of genetic diversity, which provides a useful marker resource for genetic mobility research.


Subject(s)
DNA Transposable Elements/genetics , Genetic Variation , Genome, Plant/genetics , Sorghum/genetics , Amplified Fragment Length Polymorphism Analysis/methods , DNA, Plant/analysis , DNA, Plant/genetics , Electrophoresis/methods , Evolution, Molecular , Genome Size/genetics , Polymerase Chain Reaction/methods , Polymorphism, Genetic
15.
Plants (Basel) ; 9(12)2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33297321

ABSTRACT

We aimed to develop a novel technology capable of rapidly selecting mutant plant cell lines. Salt resistance was chosen as a rapid selection trait that is easily applicable to protoplast-derived cell colonies. Mesophyll protoplasts were cultured in a medium supplemented with 0, 50, 100, 150, 200, 250, and 300 mM NaCl. At NaCl concentrations ≥ 100 mM, cell colony formation was strongly inhibited after 4 weeks of culture. Tobacco protoplasts irradiated with 0, 50, 100, 200, and 400 Gy were then cultured to investigate the effects of radiation intensity on cell division. The optimal radiation intensity was 50 Gy. To develop salt-resistant tobacco mutant plants, protoplasts irradiated with 50 Gy were cultured in a medium containing 100 mM NaCl. The efficiency of cell colony formation from these protoplasts was approximately 0.002%. A salt-resistant mutant callus was selected and proliferated in the same medium and then transferred to a shoot inducing medium for adventitious shoot formation. The obtained shoots were then cultured in a medium supplemented with 200 mM NaCl and developed into normal plantlets. This rapid selection technology for generating salt-resistant tobacco mutants will be useful for the development of crop varieties resistant to environmental stresses.

16.
Plants (Basel) ; 9(9)2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32957603

ABSTRACT

Roses are one of the most important floricultural crops, and their essential oils have long been used for cosmetics and aromatherapy. We investigated the volatile compound compositions of 12 flower-color mutant variants and their original cultivars. Twelve rose mutant genotypes were developed by treatment with 70 Gy of 60Co gamma irradiation of six commercial rose cultivars. Essential oils from the flowers of the 18 genotypes were analyzed by gas chromatography-mass spectrometry. Seventy-seven volatile compounds were detected, which were categorized into six classes: Aliphatic hydrocarbons, aliphatic alcohols, aliphatic ester, aromatic compounds, terpene alcohols, and others. Aliphatic (hydrocarbons, alcohols, and esters) compounds were abundant categories in all rose flowers. The CR-S2 mutant had the highest terpene alcohols and oil content. Three (CR-S1, CR-S3, and CR-S4) mutant genotypes showed higher ester contents than their original cultivar. Nonacosane, 2-methylhexacosane, and 2-methyltricosane were major volatile compounds among all genotypes. Hierarchical cluster analysis (HCA) of the rose genotypes gave four groups according to grouping among the 77 volatile compounds. In addition, the principal component analysis (PCA) model was successfully applied to distinguish most attractive rose lines. These findings will be useful for the selection of rose genotypes with improved volatile compounds.

17.
Molecules ; 25(18)2020 Sep 12.
Article in English | MEDLINE | ID: mdl-32932699

ABSTRACT

Hibiscus species are rich in phenolic compounds and have been traditionally used for improving human health through their bioactive activities. The present study investigated the phenolic compounds of leaf extracts from 18 different H. acetosella accessions and evaluated their biofunctional properties, focusing on antioxidant and antibacterial activity. The most abundant phenolic compound in H. acetosella was caffeic acid, with levels ranging from 14.95 to 42.93 mg/100 g. The antioxidant activity measured by the ABTS assay allowed the accessions to be classified into two groups: a high activity group with red leaf varieties (74.71-84.02%) and a relatively low activity group with green leaf varieties (57.47-65.94%). The antioxidant activity was significantly correlated with TAC (0.933), Dp3-Sam (0.932), Dp3-Glu (0.924), and Cy3-Sam (0.913) contents (p < 0.001). The H. acetosella phenolic extracts exhibited antibacterial activity against two bacteria, with zones of inhibition between 12.00 and 13.67 mm (Staphylococcus aureus), and 10.67 and 13.33 mm (Pseudomonas aeruginosa). All accessions exhibited a basal antibacterial activity level (12 mm) against the Gram-positive S. aureus, with PI500758 and PI500764 exhibiting increased antibacterial activity (13.67 mm), but they exhibited a more dynamic antibacterial activity level against the Gram-negative P. aeruginosa.


Subject(s)
Anti-Bacterial Agents/analysis , Antioxidants/analysis , Hibiscus/chemistry , Phenol/analysis , Plant Leaves/chemistry , Anthocyanins/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Cations , Flavonoids/chemistry , Microbial Sensitivity Tests , Phenol/chemistry , Plant Extracts/pharmacology , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects
18.
Plants (Basel) ; 9(5)2020 May 14.
Article in English | MEDLINE | ID: mdl-32423146

ABSTRACT

Kenaf is a source of fiber and a bioenergy crop that is considered to be a third world crop. Recently, a new kenaf cultivar, "Jangdae," was developed by gamma irradiation. It exhibited distinguishable characteristics such as higher biomass, higher seed yield, and earlier flowering than the wild type. We sequenced and analyzed the transcriptome of apical leaf and stem using Pacific Biosciences single-molecule long-read isoform sequencing platform. De novo assembly yielded 26,822 full-length transcripts with a total length of 59 Mbp. Sequence similarity against protein sequence allowed the functional annotation of 11,370 unigenes. Among them, 10,100 unigenes were assigned gene ontology terms, the majority of which were associated with the metabolic and cellular process. The Kyoto encyclopedia of genes and genomes (KEGG) analysis mapped 8875 of the annotated unigenes to 149 metabolic pathways. We also identified the majority of putative genes involved in cellulose and lignin-biosynthesis. We further evaluated the expression pattern in eight gene families involved in lignin-biosynthesis at different growth stages. In this study, appropriate biotechnological approaches using the information obtained for these putative genes will help to modify the desirable content traits in mutants. The transcriptome data can be used as a reference dataset and provide a resource for molecular genetic studies in kenaf.

19.
Plants (Basel) ; 9(4)2020 Apr 23.
Article in English | MEDLINE | ID: mdl-32340179

ABSTRACT

Ionizing radiation combined with in vitro tissue culture has been used for development of new cultivars in diverse crops. The effects of ionizing radiation on mutation induction have been analyzed on several orchid species, including Cymbidium. Limited information is available on the comparison of mutation frequency and spectrum based on phenotypes in Cymbidium species. In addition, the stability of induced chimera mutants in Cymbidium is unknown. In this study, we analyzed the radiation sensitivity, mutation frequency, and spectrum of mutants induced by diverse γ-ray treatments, and analyzed the stability of induced chimera mutants in the Cymbidium hybrid cultivars RB003 and RB012. The optimal γ-irradiation conditions of each cultivar differed as follows: RB003, mutation frequency of 4.06% (under 35 Gy/4 h); RB012, 1.51% (20 Gy/1 h). Re-irradiation of γ-rays broadened the mutation spectrum observed in RB012. The stability of leaf-color chimera mutants was higher than that of leaf-shape chimeras, and stability was dependent on the chimera type and location of a mutation in the cell layers of the shoot apical meristem. These results indicated that short-term γ-irradiation was more effective to induce mutations in Cymbidium. Information on the stability of chimera mutants will be useful for mutation breeding of diverse ornamental plants.

20.
Genet Mol Biol ; 43(1): e20180273, 2020.
Article in English | MEDLINE | ID: mdl-31479093

ABSTRACT

Ionizing radiation has a substantial effect on physiological and biochemical processes in plants via induction of transcriptional changes and diverse genetic alterations. Previous microarray analysis showed that rice OsFBX322, which encodes a rice F-box protein, was downregulated in response to three types of ionizing radiation: gamma irradiation, ion beams, and cosmic rays. In order to characterize the radiation-responsive genes in rice, OsFBX322 was selected for further analysis. OsFBX322 expression patterns in response to radiation were confirmed using quantitative RT-PCR. Transient expression of a GFP-OsFBX322 fusion protein in tobacco leaf epidermis indicated that OsFBX322 is localized to the nucleus. To determine the effect of OsFBX322 expression on radiation response, OsFBX322 was overexpressed in Arabidopsis. Transgenic overexpression lines were more sensitive to gamma irradiation than control plants. These results suggest that OsFBX322 plays a negative role in the defense response to radiation in plants. In addition, we obtained four co-expression genes of OsFBX322 by specific co-expression networks using the ARANCE. Quantitative RT-PCR showed that the four genes were also downregulated after exposure to the three types of radiation. These results imply that the co-expressed genes may serve as key regulators in the radiation response pathway in plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...