Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(35): e2301190, 2023 08.
Article in English | MEDLINE | ID: mdl-37096899

ABSTRACT

Silicon nanostructures (SiNSs) can provide multifaceted bioapplications; but preserving their subhundred nm size during high-temperature silica-to-silicon conversion is the major bottleneck. The SC-SSR utilizes an interior metal-silicide stratum space at a predetermined radial distance inside silica nanosphere to guide the magnesiothermic reduction reaction (MTR)-mediated synthesis of hollow and porous SiNSs. In depth mechanistic study explores solid-to-hollow transformation encompassing predefined radial boundary through the participation of metal-silicide species directing the in-situ formed Si-phase accumulation within the narrow stratum. Evolving thin-porous Si-shell remains well protected by the in-situ segregated MgO emerging as a protective cast against the heat-induced deformation and interparticle sintering. Retrieved hydrophilic SiNSs (<100 nm) can be conveniently processed in different biomedia as colloidal solutions and endocytosized inside cells as photoluminescence (PL)-based bioimaging probes. Inside the cell, rattle-like SiNSs encapsulated with Pd nanocrystals can function as biorthogonal nanoreactors to catalyze intracellular synthesis of probe molecules through C-C cross coupling reaction.


Subject(s)
Nanospheres , Nanostructures , Silicon/chemistry , Nanostructures/chemistry , Silicon Dioxide/chemistry , Nanospheres/chemistry , Porosity
2.
J Phys Chem A ; 126(30): 4962-4968, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35856811

ABSTRACT

Time-resolved fluorescence (TF) with high-enough resolution enables recording of a coherent vibrational spectrum (CVS). Because a CVS attained via TF (CVSF) is descended from the frequency modulation of the fluorescence spectrum, it gives the vibrational spectrum of the emitting state. Therefore, CVSF can be a powerful tool for the identification of an emitting state along with the investigation of molecular dynamics in excited states. Herein, we report CVSF of a Schiff base salicylaldehyde azine (SAA) that has two possible excited-state intramolecular proton transfer (ESIPT) sites. The ESIPT time of SAA in dichloromethane is determined to be 22 fs. Quantitative agreement between the experimental CVSF and calculated CVSF of the mono-keto isomer demonstrates that ESIPT indeed occurs in SAA only on one side. More importantly, we show that a CVSF can be utilized to identify an emitting species and its state with the help of quantum chemical calculations. Implications of the CVSF obtained by assuming impulsive excitation of vibrations are discussed in terms of the molecular mechanism of ESIPT and the generation of nuclear wave packets in the product state.

SELECTION OF CITATIONS
SEARCH DETAIL
...