Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 322
Filter
Add more filters











Publication year range
1.
IUBMB Life ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39257214

ABSTRACT

Autophagy is vital for maintaining cellular homeostasis by breaking down unnecessary organelles and proteins within cells. Its activity varies abnormally in several diseases, including cancer, making it a potential target for therapeutic strategies. The Wnt/ß-catenin signaling pathway significantly impacts cancer by stabilizing ß-catenin protein and promoting the transcription of its target genes. Therefore, we aimed to identify candidate substances targeting this signaling pathway. We designed and tested a thiouracil conjugate, discovering that TTP-8 had anti-tumor effects on human breast cancer cell lines MCF-7 and MDA-MB231. Our findings showed that TTP-8 upregulated the expression of LC3 protein, a marker of autophagy in breast cancer cells, suggesting that TTP-8 might induce autophagy. Further analysis confirmed an increase in autophagy-related proteins, with consistent results obtained from flow cytometry and confocal microscopy. Interestingly, the induction of LC3 expression by TTP-8 was even more pronounced in MCF-7 and MDA-MB231 cells transfected with ß-catenin siRNA. Thus, our research supports the idea that the Wnt/ß-catenin signaling pathway influences the regulation of autophagy-related proteins, thereby inducing autophagy. This suggests that TTP-8 could serve as a novel agent for treating breast cancer.

2.
Biochimie ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39098374

ABSTRACT

MAPK pathway regulates the major events including cell division, cell death, migration, invasion, and angiogenesis. Small molecules that modulate the MAPK pathway have been demonstrated to impart cytotoxicity in cancer cells. Herein, the synthesis of a new isoxazolyl-urea derivative (QR-4) has been described and its effect on the growth of pancreatic cancer cells has been investigated. QR-4 reduced the cell viability in a panel of pancreatic cancer cells with minimal effect on normal hepatocytes. QR-4 induced the cleavage of PARP and procaspase-3, reduced the expression of antiapoptotic proteins, increased SubG1 cells, and annexin V/PI-stained cells indicating the induction of apoptosis. QR-4 also triggered paraptosis as witnessed by the reduction of mitochondrial membrane potential, decrease in the expression of Alix, increase in the levels of ATF4 and CHOP, and enhanced ER stress. QR-4 also modulated ferroptosis-related events such as elevation in iron levels, alteration in GSH/GSSG ratio, and increase in the expression of TFRC with a parallel decrease in the expression of GPX4 and SLC7A11. The mechanistic approach revealed that QR-4 increases the phosphorylation of all three forms of MAPKs (JNK, p38, and ERK). Independent application of specific inhibitors of these MAPKs resulted in a partial reversal of QR-4-induced effects. Overall, these reports suggest that a new isoxazolyl-urea imparts cell death via apoptosis, paraptosis, and ferroptosis by regulating the MAPK pathway in pancreatic cancer cells.

3.
Transl Oncol ; 49: 102101, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39159553

ABSTRACT

Small molecule-driven JNK activation has been found to induce apoptosis and paraptosis in cancer cells. Herein pharmacological effects of synthetic oxazine (4aS, 7aS)-3-((4-(4­chloro-2-fluorophenyl)piperazin-1-yl)methyl)-4-phenyl-4, 4a, 5, 6, 7, 7a-hexahydrocyclopenta[e] [1,2]oxazine (FPPO; BSO-07) on JNK-driven apoptosis and paraptosis has been demonstrated in human breast cancer (BC) MDA-MB231 and MCF-7 cells respectively. BSO-07 imparted significant cytotoxicity in BC cells, induced activation of JNK, and increased intracellular reactive oxygen species (ROS) levels. It also enhanced the expression of apoptosis-associated proteins like PARP, Bax, and phosphorylated p53, while decreasing the levels of Bcl-2, Bcl-xL, and Survivin. Furthermore, the drug altered the expression of proteins linked to paraptosis, such as ATF4 and CHOP. Treatment with N-acetyl-cysteine (antioxidant) or SP600125 (JNK inhibitor) partly reversed the effects of BSO-07 on apoptosis and paraptosis. Advanced in silico bioinformatics, cheminformatics, density Fourier transform and molecular electrostatic potential analysis further demonstrated that BSO-07 induced apoptosis and paraptosis via the ROS/JNK pathway in human BC cells.

4.
Pathol Res Pract ; 260: 155445, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38996614

ABSTRACT

The process of apoptosis is one of the essential processes involved in maintenance of homeostasis in the human body. It can aid to remove misfolded proteins or cellular organelles. This sequence is especially necessary in cancer cells. However, specifically targeting already apoptotic pathways can induce drug resistance in cancer cells and hence drugs can induce cell death by alternative mechanism. We investigated whether fangchinoline (FCN) can target renal carcinoma cells by inducing multiple cell death mechanisms. Both paraptosis, autophagy, and apoptosis were induced by FCN through stimulation of diverse molecular signaling pathways. FCN induced ROS production with GSH/GSSG imbalance, and ER stress. In addition, formation of autophagosome and autophagy related markers were stimulated by FCN. Moreover, FCN induced cell cycle arrest and PARP cleavage. Except for blocking protein synthesis, these three cell death pathways were found to be complementarily working together with each other. FCN also exhibited synergistic effects with paclitaxel in inducing programmed cell death in RCC cells. Our data indicates that FCN could induce apoptotic cell death and non-apoptotic cell death pathways and can be con-tribute to development of novel cancer prevention or therapy.


Subject(s)
Apoptosis , Benzylisoquinolines , Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/drug therapy , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/drug therapy , Benzylisoquinolines/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Autophagy/drug effects , Reactive Oxygen Species/metabolism , Antineoplastic Agents/pharmacology , Endoplasmic Reticulum Stress/drug effects , Signal Transduction/drug effects
5.
J Adv Res ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39067696

ABSTRACT

INTRODUCTION: Globally, colorectal cancer (CRC) is the third most common type of cancer, and its treatment frequently includes the utilization of drugs based on antibodies and small molecules. The development of CRC has been linked to various signaling pathways, with the Wnt/ß-catenin pathway identified as a key target for intervention. OBJECTIVES: We have explored the impact of imidazopyridine-tethered chalcone-C (CHL-C) in CRC models. METHODS: To determine the influence of CHL-C on apoptosis and autophagy, Western blot analysis, annexin V assay, cell cycle analysis, acridine orange staining, and immunocytochemistry were performed. Next, the activation of the Wnt/ß-catenin signaling pathway and the anti-cancer effects of CHL-C in vivo were examined in an orthotopic HCT-116 mouse model. RESULTS: We describe the synthesis and biological assessment of the CHL series as inhibitors of the viability of HCT-116, SW480, HT-29, HCT-15, and SNU-C2A CRC cell lines. Further biological evaluations showed that CHL-C induced apoptosis and autophagy in down-regulated ß-catenin, Wnt3a, FZD-1, Axin-1, and p-GSK-3ß (Ser9), and up-regulated p-GSK3ß (Tyr216) and ß-TrCP. In-depth analysis using structure-based bioinformatics showed that CHL-C strongly binds to ß-catenin, with a binding affinity comparable to that of ICG-001, a well-known ß-catenin inhibitor. Additionally, our in vivo research showed that CHL-C markedly inhibited tumor growth and triggered the activation of both apoptosis and autophagy in tumor tissues. CONCLUSION: CHL-C is capable of inducing apoptosis and autophagy by influencing the Wnt/ß-catenin signaling pathway.

6.
Chem Biol Interact ; 399: 111143, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39004389

ABSTRACT

Deregulated activation of the Wnt/ß-catenin pathway is observed in many types of human malignancies including colon cancer. Abrogation of the Wnt/ß-catenin pathway has been demonstrated as an effective way of inducing cancer cell death. Herein, a new isoxazolyl-urea (QR-5) was synthesized and examined its efficacy on the viability of colon cancer cell lines. QR-5 displayed selective cytotoxicity towards colon cancer cells over normal counterparts. QR-5 induced apoptosis as evidenced by elevation in sub-G1 cells, decrease in Bcl-2, MMP-9, COX-2, VEGF and cleavage of PARP and caspase-3. QR-5 reduced the mitochondrial membrane potential, decreased the expression of Alix and elevated the expression of ATF4 and CHOP indicating the induction of paraptosis. The inhibitor of apoptosis (Z-DEVD-FMK) and paraptosis (CHX) could not restore Alix expression and PARP cleavage in QR-5 treated cells, respectively suggesting the complementation between the two cell death pathways. QR-5 suppressed the expression of Wnt/ß-catenin pathway proteins which was also evidenced by the downregulation of nuclear and cytoplasmic ß-catenin. The dependency of QR-5 on ß-catenin for inducing apoptosis and paraptosis was demonstrated by knockdown experiments using ß-catenin specific siRNA. Overall, QR-5 induces apoptosis as well as paraptosis by mitigating the Wnt/ß-catenin axis in colon cancer cells.


Subject(s)
Apoptosis , Colonic Neoplasms , Urea , Wnt Signaling Pathway , beta Catenin , Humans , Apoptosis/drug effects , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Colonic Neoplasms/drug therapy , Cell Line, Tumor , beta Catenin/metabolism , Wnt Signaling Pathway/drug effects , Urea/analogs & derivatives , Urea/pharmacology , Membrane Potential, Mitochondrial/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Paraptosis
7.
Mil Med Res ; 11(1): 35, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835066

ABSTRACT

Neuroendocrine neoplasms (NENs) are highly heterogeneous and potentially malignant tumors arising from secretory cells of the neuroendocrine system. Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are the most common subtype of NENs. Historically, GEP-NENs have been regarded as infrequent and slow-growing malignancies; however, recent data have demonstrated that the worldwide prevalence and incidence of GEP-NENs have increased exponentially over the last three decades. In addition, an increasing number of studies have proven that GEP-NENs result in a limited life expectancy. These findings suggested that the natural biology of GEP-NENs is more aggressive than commonly assumed. Therefore, there is an urgent need for advanced researches focusing on the diagnosis and management of patients with GEP-NENs. In this review, we have summarized the limitations and recent advancements in our comprehension of the epidemiology, clinical presentations, pathology, molecular biology, diagnosis, and treatment of GEP-NETs to identify factors contributing to delays in diagnosis and timely treatment of these patients.


Subject(s)
Neuroendocrine Tumors , Pancreatic Neoplasms , Stomach Neoplasms , Humans , Neuroendocrine Tumors/therapy , Neuroendocrine Tumors/epidemiology , Neuroendocrine Tumors/diagnosis , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/epidemiology , Pancreatic Neoplasms/diagnosis , Stomach Neoplasms/epidemiology , Stomach Neoplasms/therapy , Stomach Neoplasms/diagnosis , Intestinal Neoplasms/therapy , Intestinal Neoplasms/epidemiology , Intestinal Neoplasms/diagnosis
8.
IUBMB Life ; 76(9): 745-759, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38708996

ABSTRACT

Pancreatic cancer is one of the deadliest diseases with a poor prognosis and a five-survival rate. The STAT3 pathway is hyperactivated which contributes to the sustained proliferative signals in pancreatic cancer cells. We have isolated kaempferide (KF), an O-methylated flavonol, from the green propolis of Mimosa tenuiflora and examined its effect on two forms of cell death namely, apoptosis and paraptosis. KF significantly increased the cleavage of caspase-3 and PARP. It also downmodulated the expression of Alix (an intracellular inhibitor of paraptosis) and increased the expression of CHOP and ATF4 (transcription factors that promote paraptosis) indicating that KF promotes apoptosis as well as paraptosis. KF also increased intracellular reactive oxygen species (ROS) suggesting the perturbance of the redox state. N-acetylcysteine reverted the apoptosis- and paraptosis-inducing effects of KF. Some ROS inducers are known to suppress the STAT3 pathway and investigation revealed that KF downmodulates STAT3 and its upstream kinases (JAK1, JAK2, and Src). Additionally, KF also elevated the expression of SHP-1, a tyrosine phosphatase which is involved in the negative modulation of the STAT3 pathway. Knockdown of SHP-1 prevented KF-driven STAT3 inhibition. Altogether, KF has been identified as a promoter of apoptosis and paraptosis in pancreatic cancer cells through the elevation of ROS generation and SHP-1 expression.


Subject(s)
Apoptosis , Pancreatic Neoplasms , Protein Tyrosine Phosphatase, Non-Receptor Type 6 , Reactive Oxygen Species , STAT3 Transcription Factor , Signal Transduction , Humans , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics , Signal Transduction/drug effects , Kaempferols/pharmacology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Cell Proliferation/drug effects , Paraptosis
9.
Antioxidants (Basel) ; 13(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38790669

ABSTRACT

Cancer is a major global health concern. To address this, the combination of traditional medicine and newly appreciated therapeutic modalities has been gaining considerable attention. This study explores the combined effects of Aucklandiae Radix (AR) and 43 °C hyperthermia (HT) on human gastric adenocarcinoma (AGS) cell proliferation and apoptosis. We investigated the synergistic effects of AR and HT on cell viability, apoptosis, cell cycle progression, and reactive oxygen species (ROS)-dependent mechanisms. Our findings suggest that the combined treatment led to a notable decrease in AGS cell viability and increased apoptosis. Furthermore, cell cycle arrest at the G2/M phase contributed to the inhibition of cancer cell proliferation. Notably, the roles of heat shock proteins (HSPs) were highlighted, particularly in the context of ROS regulation and the induction of apoptosis. Overexpression of HSPs was observed in cells subjected to HT, whereas their levels were markedly reduced following AR treatment. The suppression of HSPs and the subsequent increase in ROS levels appeared to contribute to the activation of apoptosis, suggesting a potential role for HSPs in the combined therapy's anti-cancer mechanisms. These findings provide valuable insights into the potential of integrating AR and HT in cancer and HSPs.

10.
Life Sci ; 348: 122677, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38702026

ABSTRACT

AIMS: Epidemiological evidence indicates that there is a substantial association between body mass index (BMI) and at least ten forms of cancer, including melanoma, and BMI imbalance contributes to the poor survival rate of cancer patients before and after therapy. Nevertheless, few pharmacological studies on models of obesity and cancer have been reported. In this study, we administered epigallocatechin gallate (EGCG) to B16BL6 tumor-bearing mice that received a high-fat diet (HFD) to examine its impact. METHODS: B16BL6 tumor-bearing mice were fed a HFD. Body weight and food intake were documented every week. We conducted a Western blot analysis to examine the protein levels in the tumor, gastrocnemius (GAS), and tibialis anterior (TA) muscles, as well as the inguinal and epididymal white adipose tissues (iWAT and eWAT). KEY FINDINGS: EGCG has been shown to have anti-cancer effects equivalent to those of cisplatin, a chemotherapy drug. Furthermore, EGCG protected against the loss of epidydimal white adipose tissue by regulating protein levels of lipolysis factors of adipose triglyceride lipase and hormone-sensitive lipase as well as WAT browning factors of uncoupling protein 1, as opposed to cisplatin. EGCG was shown to reduce the protein levels of muscular atrophy factors of muscle RING-finger protein-1, whereas cisplatin did not contribute to rescuing the atrophy of TA and GAS muscles. CONCLUSION: Taken together, our findings indicate that EGCG has a preventive effect against cachexia symptoms and has anti-cancer effects similar to those of cisplatin in tumor-bearing mice fed a high-fat diet.


Subject(s)
Catechin , Diet, High-Fat , Melanoma, Experimental , Mice, Inbred C57BL , Muscular Atrophy , Animals , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/therapeutic use , Diet, High-Fat/adverse effects , Mice , Male , Muscular Atrophy/prevention & control , Muscular Atrophy/metabolism , Muscular Atrophy/drug therapy , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Obesity/metabolism , Obesity/drug therapy , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology
11.
MedComm (2020) ; 5(6): e558, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38807976

ABSTRACT

Cancer cachexia is a multifactorial condition that contributes to the death of about 20% of cancer patients. It has the potential to cause weight loss, reduction in muscle mass, and loss of fat tissue, significantly lowering the quality of life. Currently, there are no approved drugs for cancer cachexia. Here, we have explored the possible impact of brassinin (BSN) on cancer cachexia under in vitro and in vivo settings. After differentiation, C2C12 and 3T3-L1 cells were incubated with colorectal carcinoma cells conditioned media or BSN. For preclinical studies, mice were injected with HT-29 cells followed by intraperitoneal administration of BSN, and muscle and adipose tissues were evaluated by Western blotting and hematoxylin and eosin staining. BSN effectively suppressed muscle atrophy by down-regulating the levels of Muscle RING-finger protein-1 and Atrogin-1, while also increasing the expression of myosin heavy chain in cachexia-induced-C2C12 myotubes. The induction of adipogenesis by BSN prevented adipocyte atrophy in cachexia-induced 3T3-L1 adipocytes. We also noted that BSN disrupted the interaction between COX-2 and signaling transducer and activator of transcription 3 (STAT3) promoter, leading to down-regulation of STAT3 activation. Moreover, it was found that BSN inhibited weight loss in mice and demonstrated anti-cachexic effects. Overall, our observations indicate that BSN can attenuate cancer cachexia through diverse mechanisms.

12.
Chem Biol Interact ; 394: 110995, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38583854

ABSTRACT

Small molecule-driven ERK activation is known to induce autophagy and ferroptosis in cancer cells. Herein the effect of cannabidiol (CBD), a phytochemical derived from Cannabis sativa, on ERK-driven autophagy and ferroptosis has been demonstrated in glioblastoma (GBM) cells (U87 and U373 cells). CBD imparted significant cytotoxicity in GBM cells, induced activation of ERK (not JNK and p38), and increased intracellular reactive oxygen species (ROS) levels. It increased the autophagy-related proteins such as LC3 II, Atg7, and Beclin-1 and modulated the expression of ferroptosis-related proteins such as glutathione peroxidase 4 (GPX4), SLC7A11, and TFRC. CBD significantly elevated the endoplasmic reticulum stress, ROS, and iron load, and decreased GSH levels. Inhibitors of autophagy (3-MA) and ferroptosis (Fer-1) had a marginal effect on CBD-induced autophagy/ferroptosis. Treatment with N-acetyl-cysteine (antioxidant) or PD98059 (ERK inhibitor) partly reverted the CBD-induced autophagy/ferroptosis by decreasing the activation of ERK and the production of ROS. Overall, CBD induced autophagy and ferroptosis through the activation of ERK and generation of ROS in GBM cells.


Subject(s)
Autophagy , Cannabidiol , Ferroptosis , Glioblastoma , Reactive Oxygen Species , Humans , Autophagy/drug effects , Beclin-1/metabolism , Cannabidiol/pharmacology , Cell Line, Tumor , Endoplasmic Reticulum Stress/drug effects , Enzyme Activation/drug effects , Extracellular Signal-Regulated MAP Kinases/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Ferroptosis/drug effects , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/drug therapy , MAP Kinase Signaling System/drug effects , Reactive Oxygen Species/metabolism
13.
J Cell Biochem ; 125(4): e30537, 2024 04.
Article in English | MEDLINE | ID: mdl-38358093

ABSTRACT

Mitogen-activated protein kinase (MAPK) activation by natural compounds is known to be involved in the induction of apoptosis, paraptosis, and autophagy. Cannabidiol (CBD), a bioactive compound found in Cannabis sativa, is endowed with many pharmacological activities. We investigated the cytotoxic effect of CBD in a panel of colorectal cancer (CRC) cells (HT-29, SW480, HCT-116, and HCT-15). CBD induced significant cytotoxicity as evidenced by the results of MTT  assay, live-dead assay, and flow cytometric analysis. Since CBD displayed cytotoxicity against CRC cells, we examined the effect of CBD on apoptosis, paraptosis, and autophagy. CBD decreased the expression of antiapoptotic proteins and increased the Annexin-V-positive as well as TUNEL-positive cells suggesting that CBD induces apoptosis. CBD increased the expression of ATF4 (activating transcription factor 4) and CHOP (CCAAT/enhancer-binding protein homologous protein), elevated endoplasmic reticulum stress, and enhanced reactive oxygen species levels indicating that CBD also promotes paraptosis. CBD also induced the expression of Atg7, phospho-Beclin-1, and LC3 suggesting that CBD also accelerates autophagy. Since, the MAPK pathway is a common cascade that is involved in the regulation of apoptosis, paraptosis, and autophagy, we investigated the effect of CBD on the activation of JNK, p38, and ERK pathways. CBD activated all the forms of MAPK proteins and pharmacological inhibition of these proteins reverted the observed effects. Our findings implied that CBD could induce CRC cell death by activating apoptosis, paraptosis, and autophagy through the activation of the MAPK pathway.


Subject(s)
Cannabidiol , Colorectal Neoplasms , Humans , Mitogen-Activated Protein Kinases/metabolism , Cannabidiol/pharmacology , Cell Line, Tumor , Paraptosis , Apoptosis , Autophagy , Colorectal Neoplasms/drug therapy
14.
Biochim Biophys Acta Mol Cell Res ; 1871(3): 119670, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38220095

ABSTRACT

Cancer cachexia is a type of energy-wasting syndrome characterized by fatigue, anorexia, muscle weakness, fat loss, and systemic inflammation. Baicalein, a flavonoid with bioactive properties, has demonstrated the ability to mitigate cardiac and skeletal muscle atrophy in different experimental settings. This effect is achieved through the inhibition of muscle proteolysis, suggesting its potential in preserving skeletal muscle homeostasis. In this study, we investigated the anti-cancer cachexia effects of baicalein in the regulation of muscle and fat wasting, both in vivo and in vitro. Baicalein attenuated body weight loss, including skeletal muscle and white adipose tissue (WAT), in CT26-induced cachectic mice. Moreover, baicalein increased muscle fiber thickness and suppressed the muscle-specific ubiquitin-protease system, including F-box only protein 32 and muscle RING-finger protein-1, by activating AKT phosphorylation both in vivo and in vitro. The use of LY294002, a particular inhibitor of AKT, eliminated the observed impact of baicalein on the improvement of muscle atrophy. In conclusion, baicalein inhibits muscle proteolysis and enhances AKT phosphorylation, indicating its potential role in cancer cachexia-associated muscle atrophy.


Subject(s)
Cachexia , Colonic Neoplasms , Flavanones , Animals , Mice , Cachexia/etiology , Cachexia/prevention & control , Cachexia/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Muscular Atrophy/etiology , Muscular Atrophy/prevention & control , Colonic Neoplasms/complications
15.
Cancer Lett ; 582: 216518, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38043785

ABSTRACT

Autophagy is a self-digestion multistep process in which causes the homeostasis through degradation of macromolecules and damaged organelles. The autophagy-mediated tumor progression regulation has been a critical point in recent years, revealing the function of this process in reduction or acceleration of carcinogenesis. Leukemia is a haematological malignancy in which abnormal expansion of hematopoietic cells occurs. The current and conventional therapies from chemotherapy to cell transplantation have failed to appropriately treat the leukemia patients. Among the mechanisms dysregulated in leukemia, autophagy is a prominent one in which can regulate the hallmarks of this tumor. The protective autophagy inhibits apoptosis and ferroptosis in leukemia, while toxic autophagy accelerates cell death. The proliferation and invasion of tumor cells are tightly regulated by the autophagy. The direction of regulation depends on the function of autophagy that is protective or lethal. The protective autophagy accelerates chemoresistance and radio-resistsance. The non-coding RNAs, histone transferases and other pathways such as PI3K/Akt/mTOR are among the regulators of autophagy in leukemia progression. The pharmacological intervention for the inhibition or induction of autophagy by the compounds including sesamine, tanshinone IIA and other synthetic compounds can chance progression of leukemia.


Subject(s)
Ferroptosis , Leukemia , Humans , Signal Transduction , Cell Line, Tumor , Phosphatidylinositol 3-Kinases/metabolism , Leukemia/drug therapy , Leukemia/genetics , Apoptosis , Autophagy , Proto-Oncogene Proteins c-akt/metabolism , Cell Proliferation
16.
Cell Signal ; 114: 111003, 2024 02.
Article in English | MEDLINE | ID: mdl-38048857

ABSTRACT

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that directs the transcription of genes involved in the promotion of cell survival and proliferation, inflammation, angiogenesis, invasion, and migration. Overactivation of STAT3 is often witnessed in human cancers, thereby making it a good target in oncology. Herein the efficacy of Leonurine (Leo), a bioactive alkaloid present in Herba leonuri, was investigated for its STAT3-inhibitory potential in hepatocellular carcinoma (HCC) cells. Leo downregulated the persistent as well as IL-6-driven activation of STAT3. Leo abrogated the nuclear localization and DNA interacting ability of STAT3. Leo was also found to impart STAT3 inhibition by mitigating the activation of upstream kinases such as JAK1, JAK2, and Src both in constitutive and IL-6 inducible systems. Leo curbed the STAT3-driven luciferase gene expression and the depletion of STAT3 resulted in the reduced responsiveness of HCC cells to Leo. Pervanadate exposure counteracted Leo-induced STAT3 inhibition suggesting the involvement of a protein tyrosine phosphatase. SHP-1 was significantly elevated upon Leo exposure whereas the depletion of SHP-1 was found to revert the effect of Leo on STAT3. Leo induced apoptosis and also significantly potentiated the cytotoxic effect of paclitaxel, doxorubicin, and sorafenib. Leo was found to be non-toxic up to the dose of 10 mg/kg in NCr nude mice. In conclusion, Leo was demonstrated to induce cytotoxicity in HCC cells by mitigating the persistent of activation of STAT3 pathway.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Humans , Carcinoma, Hepatocellular/pathology , STAT3 Transcription Factor/metabolism , Liver Neoplasms/pathology , Signal Transduction , Up-Regulation , Mice, Nude , Interleukin-6/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Apoptosis
17.
Biomedicines ; 11(10)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37893090

ABSTRACT

Nuclear factor kappa B (NF-κB) is a potential therapeutic target in breast cancer. In the current study, a new class of oxazine- and piperazine-linked pyrimidines was developed as inhibitors of NF-κB, overcoming the complexity of the oxazine structure found in nature and enabling synthesis under laboratory conditions. Among the series of synthesized and tested oxazine-pyrimidine and piperazine-pyrimidine derivatives, compounds 3a and 5b inhibited breast cancer cell (MCF-7) viability with an IC50 value of 9.17 and 6.29 µM, respectively. In silico docking studies showed that the pyrimidine ring of 3a and the 4-methoxybenzyl thiol group of 5b could strongly bind the p65 subunit of NF-κB, with the binding energies -9.32 and -7.32 kcal mol-1. Furthermore, compounds 3a and 5b inhibited NF-κB in MCF-7 breast cancer cells. In conclusion, we herein report newer structures that target NF-κB in BC cells.

18.
Cancers (Basel) ; 15(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37835375

ABSTRACT

DA, one of the medium-chain fatty acids found in coconut oil, is suggested to have diverse biochemical functions. However, its possible role as a chemoprevention agent in HCC has not been deciphered. Aberrant activation of c-Met can modulate tumor growth and progression in HCC. Here, we report that DA exhibited pro-found anti-tumor effects on human HCC through the suppression of HGF/c-Met signaling cascades in vitro and in vivo. It was noted that DA inhibited HGF-induced activation of c-Met and its downstream signals. DA induced apoptotic cell death and inhibited the expression of diverse tumorigenic proteins. In addition, DA attenuated tumor growth and lung metastasis in the HCC mouse model. Similar to in vitro studies, DA also suppressed the expression of c-Met and its downstream signals in mice tissues. These results highlight the substantial potential of DA in the prevention and treatment of HCC.

19.
Chem Biol Interact ; 386: 110780, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37879592

ABSTRACT

Signal transducer and activator of transcription 3 (STAT3) promotes breast cancer malignancy and controls key processes including proliferation, differentiation, and survival in breast cancer cells. Although many methods for treating breast cancer have been improved, there is still a need to discover and develop new methods for breast cancer treatment. Therefore, we synthesized a new compound 2-(4-(2,3-dichlorophenyl)piperazin-1-yl)-1-(3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone (DIP). We aimed to evaluate the anti-cancer effect of DIP in breast cancer cells and clarify its mode of action. We noted that DIP abrogated STAT3 activation and STAT3 upstream kinases janus-activated kinase (JAK) and Src kinases. In addition, DIP promoted the levels of SHP-1 protein and acts as SHP-1 agonist. Further, silencing of SHP-1 gene reversed the DIP-induced attenuation of STAT3 activation and apoptosis. DIP also induced apoptosis through modulating PARP cleavage and oncogenic proteins. Moreover, DIP also significantly enhanced the apoptotic effects of docetaxel through the suppression of STAT3 activation in breast cancer cells. Overall, our data indicated that DIP may act as a suppressor of STAT3 cascade, and it could be a new therapeutic strategy in breast cancer cells.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Female , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , STAT3 Transcription Factor/metabolism , Cell Proliferation , Apoptosis , Cell Line, Tumor , Phosphorylation
20.
Int J Mol Sci ; 24(18)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37762016

ABSTRACT

Euphorbiasteroid (EPBS) has gained attention for its activity against human lung cancer and sarcoma; however, its impact on hepatocellular carcinoma has not yet been elucidated. Here, we investigated the cytotoxic effect of EPBS on human hepatocellular carcinoma (HCC) cells. We found that EPBS induced both apoptosis and autophagy in HCC cells. Additionally, we observed that EPBS treatment suppressed the constitutive as well as the inducible activation of a signal transducer and activator of transcription 3 (STAT3) protein expression. Moreover, EPBS promoted the expression of SHP-1 protein and the production of reactive oxidative stress (ROS). Furthermore, the knockdown of SHP-1 by siRNA transfection reversed the effects of EPBS, which have inductive effects related to apoptosis and autophagy. Therefore, EPBS can potentially function as an anti-cancer agent by inducing apoptosis and autophagy when targeting the SHP-1/STAT3 pathway.

SELECTION OF CITATIONS
SEARCH DETAIL