Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(7): 4521-4531, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38346143

ABSTRACT

In redox flow batteries, a compelling strategy for enhancing the charge capacity of redox-active organic molecules involves storing multiple electrons within a single molecule. However, this approach poses unique challenges such as chemical instability by forming radicals, elevated energy requirements, and unsustainable charge concentration. Ion pairing is a possible solution to achieve charge neutrality and engineer redox potential shifts but has received limited attention. In this study, we demonstrate that Li+ can stabilize naphthalene diimide (NDI) anions dissolved in acetonitrile and significantly shift the second cathodic potential close to the first. Our findings, supported by density functional theory calculations and Fourier transform infrared spectroscopy, indicate that dimeric NDI species form stable ion pairs with Li+. Conversely, K+ ions exhibit weak interactions, and cyclic voltammograms confirm significant potential shifts when stronger Lewis acids and solvents with lower donor numbers are employed. Galvanostatic examinations reveal a single voltage plateau with Li+, which indicates a rapid redox process involving doubly charged NDI2- with Li+. These aggregated ion pairs offer the additional benefits of hindering crossover events, contributing to excellent cyclability, and suppressing undesirable side reactions even after 1000 redox cycles.

2.
Adv Mater ; 35(13): e2210859, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36749820

ABSTRACT

Organic redox-active molecules are a promising platform for designing sustainable, cheap, and safe charge carriers for redox flow batteries. However, radical formation during the electron-transfer process causes severe side reactions and reduces cyclability. This problem is mitigated by using naphthalene diimide (NDI) molecules and regulating their π-π interactions. The long-range π-stacking of NDI molecules, which leads to precipitation, is disrupted by tethering four ammonium functionalities, and the solubility approaches 1.5 m in water. The gentle π-π interactions induce clustering and disassembling of the NDI molecules during the two-electron transfer processes. When the radical anion forms, the antiferromagnetic coupling develops tetramer and dimer and nullifies the radical character. In addition, short-range-order NDI clusters at 1 m concentration are not precipitated but inhibit crossover. They are disassembled in the subsequent electron-transfer process, and the negatively charged NDI core strongly interacts with ammonium groups. These behaviors afford excellent RFB performance, demonstrating 98% capacity retention for 500 cycles at 25 mA cm-2 and 99.5% Coulombic efficiency with 2 m electron storage capacity.

3.
Org Lett ; 22(4): 1280-1285, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32027138

ABSTRACT

Pd-catalyzed C-H annulation reactions of halo- and aryl-heteroarenes were developed using readily available o-bromobiaryls and o-dibromoaryls, respectively. A variety of five-membered heteroarenes rapidly provided the corresponding phenanthrene-fused heteroarenes, which led to the identification of phenanthro-pyrazole and thiazole as new, stable -2 V redox couples. The flexible syntheses and tunability of the redox potentials of these azole-fused phenanthrenes over a wide range are expected to facilitate their application as redox-active organic functional materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...