Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Eng Regen Med ; 19(5): 1089-1098, 2022 10.
Article in English | MEDLINE | ID: mdl-35551635

ABSTRACT

BACKGROUND: Tissue engineering approaches to treat damaged bone include various tissue transplants such as autologous, allogeneic, and xenografts. Artificial materials have been widely introduced to meet the demand for graft materials, but insufficiency in supply is still not resolved. In this study, human adipose tissue, easily obtained from the human body, was harvested, and the tissue was decellularized to fabricate a decellularized human adipose tissue matrix (DM) as an alternative graft material. METHODS: Human adipose tissue was obtained via liposuction. The obtained fresh adipose tissue sample was cut into pieces then put into decellularization solution (1% antibiotic-antimycotic solution and 1% phenylmethanesulphonyl fluoride). Lipids were further removed via treatment in isopropanol. The sample was then subjected to another enzymatic digestion and lipid removal processes. The obtained decellularized adipose tissue matrix was lyophilized to form a graft material in disc shape. RESULTS: Decellularization was confirmed by nuclear staining methods and detection of RNA and DNA via PCR. Bone morphogenetic protein 2 (BMP2)-loaded DM showed the ability to form new bone tissue when implanted in subcutaneous tissue. In recovery of a mouse calvarial defect model, BMP2-loaded DM exhibited similar levels of bone tissue regeneration efficiency compared with a well-defined commercial product, BMP2-loaded CollaCote®. CONCLUSION: The DM developed in this study is expected to address the problem of insufficient supply of graft materials and contribute to the treatment of bone defects of critical size as an alternative bone graft material with preserved extracellular matrix components.


Subject(s)
Bone Morphogenetic Protein 2 , Tissue Scaffolds , 2-Propanol/metabolism , Adipose Tissue , Animals , Anti-Bacterial Agents , Bone Morphogenetic Protein 2/metabolism , Bone Regeneration , DNA/metabolism , Extracellular Matrix/metabolism , Fluorides/metabolism , Humans , Lipids , Mice , RNA/metabolism
2.
Tissue Eng Regen Med ; 17(5): 607-624, 2020 10.
Article in English | MEDLINE | ID: mdl-32803541

ABSTRACT

BACKGROUND: The delivery of growth factors using a carrier system presents a promising and innovative tool in tissue engineering and dentistry today. Two of the foremost bioactive factors, bone morphogenetic protein-2 and vascular endothelial growth factor (VEGF), are widely applied using a ceramic scaffold. The aim of this study was to determine the use of hydroxyapatite microcarrier (MC) for dual delivery of osteogenic and angiogenic factors to accelerate hard tissue regeneration during the regenerative process. METHODS: Two MCs of different sizes were fabricated by emulsification of gelatin and alpha-tricalcium phosphate (α-TCP). The experimental group was divided based on the combination of MC size and growth factors. For investigating the in vitro properties, rat mesenchymal stem cells (rMSCs) were harvested from bone marrow of the femur and tibia. For in vivo experiments, MC with/without growth factors was applied into the standardized, 5-mm diameter defects, which were made bilaterally on the parietal bone of the rat. The animals were allowed to heal for 8 weeks, and samples were harvested and analyzed by micro-computed tomography and histology. RESULTS: Improved proliferation of rat mesenchymal stem cells was observed with VEGF loaded MC. For osteogenic differentiation, dual growth factors delivered by MC showed higher osteogenic gene expression, alkaline phosphatse production and calcium deposition. The in vivo results revealed statistically significant increase in new bone formation when dual growth factors were delivered by MC. Dual growth factors administered on a calcium phosphate matrix showed significantly enhanced osteogenic potential. CONCLUSION: We propose this system has potential clinical utility in providing solutions for craniofacial bone defects, with the added benefit of early availability.


Subject(s)
Durapatite , Osteogenesis , Animals , Bone Regeneration , Rats , Vascular Endothelial Growth Factor A , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...