Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 141(6): 645-658, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36223592

ABSTRACT

The mechanisms of coordinated changes in proteome composition and their relevance for the differentiation of neutrophil granulocytes are not well studied. Here, we discover 2 novel human genetic defects in signal recognition particle receptor alpha (SRPRA) and SRP19, constituents of the mammalian cotranslational targeting machinery, and characterize their roles in neutrophil granulocyte differentiation. We systematically study the proteome of neutrophil granulocytes from patients with variants in the SRP genes, HAX1, and ELANE, and identify global as well as specific proteome aberrations. Using in vitro differentiation of human induced pluripotent stem cells and in vivo zebrafish models, we study the effects of SRP deficiency on neutrophil granulocyte development. In a heterologous cell-based inducible protein expression system, we validate the effects conferred by SRP dysfunction for selected proteins that we identified in our proteome screen. Thus, SRP-dependent protein processing, intracellular trafficking, and homeostasis are critically important for the differentiation of neutrophil granulocytes.


Subject(s)
Induced Pluripotent Stem Cells , Proteome , Animals , Humans , Zebrafish , Human Genetics , Mammals , Adaptor Proteins, Signal Transducing
2.
Bioinformatics ; 33(10): 1565-1567, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28069593

ABSTRACT

Summary: Analysis of Next Generation Sequencing (NGS) data requires the processing of large datasets by chaining various tools with complex input and output formats. In order to automate data analysis, we propose to standardize NGS tasks into modular workflows. This simplifies reliable handling and processing of NGS data, and corresponding solutions become substantially more reproducible and easier to maintain. Here, we present a documented, linux-based, toolbox of 42 processing modules that are combined to construct workflows facilitating a variety of tasks such as DNAseq and RNAseq analysis. We also describe important technical extensions. The high throughput executor (HTE) helps to increase the reliability and to reduce manual interventions when processing complex datasets. We also provide a dedicated binary manager that assists users in obtaining the modules' executables and keeping them up to date. As basis for this actively developed toolbox we use the workflow management software KNIME. Availability and Implementation: See http://ibisngs.github.io/knime4ngs for nodes and user manual (GPLv3 license). Contact: robert.kueffner@helmholtz-muenchen.de. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Software , Reproducibility of Results , Workflow
3.
Mol Cancer Res ; 14(11): 1147-1158, 2016 11.
Article in English | MEDLINE | ID: mdl-27489361

ABSTRACT

Matrix metalloproteinase 9 (MMP-9/Gelatinase B) is overexpressed in pancreatic ductal adenocarcinoma (PDAC) and plays a central role in tumor cell invasion and metastasis. Here we complemented mechanistic insights in the cancer biology of MMP-9 and investigated the effects of specific long-term loss-of-function, by genetic ablation, of MMP-9 on PDAC initiation and progression in the well-established KPC mouse model of spontaneous PDAC. Tumor growth and progression were analyzed by histopathology and IHC. Invasive growth of PDAC cells was analyzed by both in vitro (proliferation, survival, migration, invasion assays) and in vivo (experimental metastasis assays) methods. Retroviral shRNAi was used to knockdown target genes (MMP-9, IL6R). Gene expression was analyzed by qRT-PCR, immunoblot, ELISA, in situ hybridization, and zymography. PDAC tumors from MMP-9-deficient mice were dramatically larger, more invasive, and contained more stroma. Yet, ablation of MMP-9 in PDAC cells did not directly promote invasive growth. Interestingly, systemic ablation of MMP-9 led to increased IL6 levels resulting from abrogation of MMP-9-dependent SCF signaling in the bone marrow. IL6 levels in MMP-9-/- mice were sufficient to induce invasive growth and STAT3 activation in PDAC cells via IL6 receptor (IL6R). Interference with IL6R blocked the increased invasion and metastasis of PDAC cells in MMP-9-deficient hosts. In conclusion, ablation of systemic MMP-9 initiated fatal communication between maintenance of physiological functions of MMP-9 in the bone marrow and invasive growth of PDAC via the IL6/IL6R/STAT3 axis. IMPLICATIONS: Thus, the beneficial effects of host MMP-9 on PDAC are an important caveat for the use of systemic MMP-9 inhibitors in cancer. Mol Cancer Res; 14(11); 1147-58. ©2016 AACR.


Subject(s)
Bone Marrow/metabolism , Carcinoma, Pancreatic Ductal/pathology , Interleukin-6/metabolism , Matrix Metalloproteinase 9/genetics , Pancreatic Neoplasms/pathology , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Knockout , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasms, Experimental , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...