Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
BMC Health Serv Res ; 22(1): 1513, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36510176

ABSTRACT

BACKGROUND: Artificial intelligence (AI) and machine learning are transforming the optimization of clinical and patient workflows in healthcare. There is a need for research to specify clinical requirements for AI-enhanced care pathway planning and scheduling systems to improve human-AI interaction in machine learning applications. The aim of this study was to assess content validity and prioritize the most relevant functionalities of an AI-enhanced care pathway planning and scheduling system. METHODS: A prospective content validity assessment was conducted in five university hospitals in three different countries using an electronic survey. The content of the survey was formed from clinical requirements, which were formulated into generic statements of required AI functionalities. The relevancy of each statement was evaluated using a content validity index. In addition, weighted ranking points were calculated to prioritize the most relevant functionalities of an AI-enhanced care pathway planning and scheduling system. RESULTS: A total of 50 responses were received from clinical professionals from three European countries. An item-level content validity index ranged from 0.42 to 0.96. 45% of the generic statements were considered good. The highest ranked functionalities for an AI-enhanced care pathway planning and scheduling system were related to risk assessment, patient profiling, and resources. The highest ranked functionalities for the user interface were related to the explainability of machine learning models. CONCLUSION: This study provided a comprehensive list of functionalities that can be used to design future AI-enhanced solutions and evaluate the designed solutions against requirements. The relevance of statements concerning the AI functionalities were considered somewhat relevant, which might be due to the low level or organizational readiness for AI in healthcare.


Subject(s)
Artificial Intelligence , Critical Pathways , Humans , Prospective Studies , Machine Learning , Health Facilities , Drugs, Generic
2.
Nanomaterials (Basel) ; 12(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36500958

ABSTRACT

History has demonstrated that the uncontrolled fast thriving of potentially pathogenic microorganisms may lead to serious consequences and, thus, the approaches helping to control the microbial numbers in infectional hot-spots are necessary [...].

3.
Nanomaterials (Basel) ; 11(7)2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34361171

ABSTRACT

Presently, there are many different types of wound dressings available on the market. Nonetheless, there is still a great interest to improve the performance and efficiency of these materials. Concerning that, new dressing materials containing natural products, such as medicinal plants that protect the wound from infections but also enhance skin regeneration have been or are being developed. Herein, we used for the first time a needleless emulsion electrospinning technique for incorporating Chelidoniummajus L. (C. majus), a medicinal plant widely known for its traditional therapeutic properties, in Polycaprolactone (PCL)/Polyvinyl Alcohol (PVA)_Pectin (PEC) nanofibrous meshes. Moreover, the potential use of these electrospun nanofibers as a carrier for C. majus was also explored. The results obtained revealed that the produced PCL/PVA_PEC nanofibrous meshes containing C. majus extract displayed morphological characteristics similar to the natural extracellular matrix of the skin (ECM). Furthermore, the produced meshes showed beneficial properties to support the healing process. Additionally, the C. majus-loaded PCL/PVA_PEC nanofibrous meshes inhibited Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) growth, reaching a 3.82 Log reduction, and showed to be useful for controlled release, without causing any cytotoxic effect on the normal human dermal fibroblasts (NHDF) cells. Hence, these findings suggest the promising suitability of this novel wound dressing material for prevention and treatment of bacterial wound infections.

4.
Materials (Basel) ; 14(4)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562618

ABSTRACT

A brand-new office building in Rauma, Finland, was used to study the first five years of PEX-a drinking water pipes in normal use. Both pipe material and water samples from hot and cold-water pipelines were analyzed. Migration of volatile organic compounds (VOC) from the PEX-a pipes into the drinking water was observed to decrease rapidly during the first months. Deterioration of the PEX-a material was observed to take place due to the wearing down of organic antioxidants added into the PEX-a material during the manufacturing of the pipes. Tert-butyl alcohol (TBA) concentrations were high during the first months after commissioning of use. The stagnation time of the drinking water in contact with the PEX-a material before the actual water sample was taken had a major impact on analyzed migration of organic compounds. Hence, the amount of organic compounds able to migrate from materials into the drinking water will increase when the stagnation time increases. In this study, the water samples were taken after overnight stagnation, whereas in normal use it is advisable to run water properly before drinking it. Instructions will be needed for the average user to avoid harmful health effects.

5.
Water Res X ; 9: 100069, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33083777

ABSTRACT

Nitrite in drinking water is a potentially harmful substance for humans, and controlling nitrite formation in drinking water distribution systems (DWDSs) is highly important. The effect of natural organic matter (NOM) on the formation of nitrite in simulated distribution systems was studied. The objective was to inspect how a reduced NOM concentration affected nitrite development via nitrification, separated from the effects of disinfection. We observed that nitrite formation was noticeably sensitive to the changes in the NOM concentrations. Nitrite declined with reduced NOM (TOC 1.0 mg L-1) but increased with the normal NOM concentration of tap water (TOC 1.6 mg L-1). Ammonium oxidation was not altered by the reduced NOM, however, nitrite oxidation was enhanced significantly according to the pseudo-first order reaction rate model interpretation. The enhanced nitrite oxidation was observed with both ammonium and nitrite as the initial nitrogen source. The theoretical maximum nitrite concentrations were higher with the normal concentration of NOM than with reduced NOM. The results suggest that the role of nitrite oxidation may be quite important in nitrite formation in DWDSs and worth further studies. As a practical result, our study supported enhanced NOM removal in non-disinfected DWDSs.

6.
J Biophotonics ; 13(1): e201960069, 2020 01.
Article in English | MEDLINE | ID: mdl-31613045

ABSTRACT

Organic dirt on touch surfaces can be biological contaminants (microbes) or nutrients for those but is often invisible by the human eye causing challenges for evaluating the need for cleaning. Using hyperspectral scanning algorithm, touch surface cleanliness monitoring by optical imaging was studied in a real-life hospital environment. As the highlight, a human eye invisible stain from a dirty chair armrest was revealed manually with algorithms including threshold levels for intensity and clustering analysis with two excitation lights (green and red) and one bandpass filter (wavelength λ = 500 nm). The same result was confirmed by automatic k-means clustering analysis from the entire dirty data of visible light (red, green and blue) and filters 420 to 720 nm with 20 nm increments. Overall, the collected touch surface samples (N = 156) indicated the need for cleaning in some locations by the high culturable bacteria and adenosine triphosphate counts despite the lack of visible dirt. Examples of such locations were toilet door lock knobs and busy registration desk armchairs. Thus, the studied optical imaging system utilizing the safe visible light area shows a promising method for touch surface cleanliness evaluation in real-life environments.


Subject(s)
Adenosine Triphosphate , Hospitals , Bacteria , Humans
7.
PeerJ ; 7: e6315, 2019.
Article in English | MEDLINE | ID: mdl-30775167

ABSTRACT

This review was initiated by the COST action CA15114 AMICI "Anti-Microbial Coating Innovations to prevent infectious diseases," where one important aspect is to analyze ecotoxicological impacts of antimicrobial coatings (AMCs) to ensure their sustainable use. Scopus database was used to collect scientific literature on the types and uses of AMCs, while market reports were used to collect data on production volumes. Special attention was paid on data obtained for the release of the most prevalent ingredients of AMCs into the aqueous phase that was used as the proxy for their possible ecotoxicological effects. Based on the critical analysis of 2,720 papers, it can be concluded that silver-based AMCs are by far the most studied and used coatings followed by those based on titanium, copper, zinc, chitosan and quaternary ammonium compounds. The literature analysis pointed to biomedicine, followed by marine industry, construction industry (paints), food industry and textiles as the main fields of application of AMCs. The published data on ecotoxicological effects of AMCs was scarce, and also only a small number of the papers provided information on release of antimicrobial ingredients from AMCs. The available release data allowed to conclude that silver, copper and zinc are often released in substantial amounts (up to 100%) from the coatings to the aqueous environment. Chitosan and titanium were mostly not used as active released ingredients in AMCs, but rather as carriers for other release-based antimicrobial ingredients (e.g., conventional antibiotics). While minimizing the prevalence of healthcare-associated infections appeared to be the most prosperous field of AMCs application, the release of environmentally hazardous ingredients of AMCs into hospital wastewaters and thus, also the environmental risks associated with AMCs, comprise currently only a fraction of the release and risks of traditional disinfectants. However, being proactive, while the use of antimicrobial/antifouling coatings could currently pose ecotoxicological effects mainly in marine applications, the broad use of AMCs in other applications like medicine, food packaging and textiles should be postponed until reaching evidences on the (i) profound efficiency of these materials in controlling the spread of pathogenic microbes and (ii) safety of AMCs for the human and ecosystems.

8.
Article in English | MEDLINE | ID: mdl-30111761

ABSTRACT

We studied the seasonal variation of nitrite exposure in a drinking water distribution system (DWDS) with monochloramine disinfection in the Helsinki Metropolitan Area. In Finland, tap water is the main source of drinking water, and thus the nitrite in tap water increases nitrite exposure. Our data included both the obligatory monitoring and a sampling campaign data from a sampling campaign. Seasonality was evaluated by comparing a nitrite time series to temperature and by calculating the seasonal indices of the nitrite time series. The main drivers of nitrite seasonality were the temperature and the water age. We observed that with low water ages (median: 6.7 h) the highest nitrite exposure occurred during the summer months, and with higher water ages (median: 31 h) during the winter months. With the highest water age (190 h), nitrite concentrations were the lowest. At a low temperature, the high nitrite concentrations in the winter were caused by the decelerated ammonium oxidation. The dominant reaction at low water ages was ammonium oxidation into nitrite and, at high water ages, it was nitrite oxidation into nitrate. These results help to direct monitoring appropriately to gain exact knowledge of nitrite exposure. Also, possible future process changes and additional disinfection measures can be designed appropriately to minimize extra nitrite exposure.


Subject(s)
Drinking Water/analysis , Nitrites/analysis , Water Pollutants, Chemical/analysis , Ammonium Compounds/chemistry , Chloramines/chemistry , Disinfection/methods , Environmental Monitoring , Finland , Nitrates/chemistry , Nitrites/chemistry , Oxidation-Reduction , Seasons , Temperature , Water Pollutants, Chemical/chemistry
9.
Bioengineered ; 8(6): 679-685, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-28453429

ABSTRACT

Worldwide, millions of patients are affected annually by healthcare-associated infection (HCAI), impacting up to 80,000 patients in European Hospitals on any given day. This represents not only public health risk, but also an economic burden. Complementing routine hand hygiene practices, cleaning and disinfection, antimicrobial coatings hold promise based, in essence, on the application of materials and chemicals with persistent bactericidal or -static properties onto surfaces or in textiles used in healthcare environments. The focus of considerable commercial investment and academic research energies, such antimicrobial coating-based approaches are widely believed to have potential in reduction of microbial numbers on surfaces in clinical settings. This belief exists despite definitive evidence as to their efficacy and is based somewhat on positive studies involving, for example, copper, silver or gold ions, titanium or organosilane, albeit under laboratory conditions. The literature describes successful delay and/or prevention of recontamination following conventional cleaning and disinfection by problematic microbes such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin resistant enterococci (VRE), among others. However, there is a scarcity of studies assessing antimicrobial surfaces other than copper in the clinical environment, and a complete lack of published data regarding the successful implementation of these materials on clinically significant outcomes (including HCAI). Through its Cooperation in Science and Technology program (COST), the European Commission has funded a 4-year initiative to establish a network of stakeholders involved in development, regulation and use of novel anti-microbial coatings for prevention of HCAI. The network (AMiCI) comprises participants of more than 60 universities, research institutes and companies across 29 European countries and, to-date, represents the most comprehensive consortium targeting use of these emergent technologies in healthcare settings. More specifically, the network will prioritise coordinated research on the effects (both positive and negative) of antimicrobial coatings in healthcare sectors; know-how regarding availability and mechanisms of action of (nano)-coatings; possible adverse effects of such materials (e.g., potential emergence of microbial resistance or emission of toxic agents into the environment); standardised performance assessments for antimicrobial coatings; identification and dissemination of best practices by hospitals, other clinical facilities, regulators and manufacturers.


Subject(s)
Cross Infection/prevention & control , Anti-Infective Agents/chemistry , Anti-Infective Agents/therapeutic use , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Vancomycin-Resistant Enterococci/drug effects
10.
Article in English | MEDLINE | ID: mdl-28362344

ABSTRACT

Infections and infectious diseases are considered a major challenge to human health in healthcare units worldwide. This opinion paper was initiated by EU COST Action network AMiCI (AntiMicrobial Coating Innovations) and focuses on scientific information essential for weighing the risks and benefits of antimicrobial surfaces in healthcare settings. Particular attention is drawn on nanomaterial-based antimicrobial surfaces in frequently-touched areas in healthcare settings and the potential of these nano-enabled coatings to induce (eco)toxicological hazard and antimicrobial resistance. Possibilities to minimize those risks e.g., at the level of safe-by-design are demonstrated.


Subject(s)
Anti-Infective Agents/therapeutic use , Cross Infection/prevention & control , Equipment Contamination/prevention & control , Fomites/microbiology , Infection Control/methods , Nanostructures , Drug Resistance, Microbial , Humans , Infection Control/standards , Quality of Health Care , Safety
11.
Int J Cancer ; 108(3): 367-73, 2004 Jan 20.
Article in English | MEDLINE | ID: mdl-14648702

ABSTRACT

Vitamin D and its analogues are potent regulators of cell growth and differentiation both in vivo and in vitro. We studied the effects of 25-hydroxyvitamin D(3) [25(OH)D(3)], 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] and vitamin D analogue, EB 1089, on the growth of a human ovarian cancer cell line, OVCAR-3. We also studied the expression of vitamin D metabolising enzymes 24-hydroxylase (24OHase) and 1alpha-hydroxylase (1alphaOHase). Our results showed that high concentrations (10 and 100 nM) of 1,25(OH)(2)D(3) inhibited a cell proliferation, whereas low concentration (0.1 nM) stimulated growth of the OVCAR-3 cells. In the concentration range of 10-500 nM a prohormone, 25(OH)D(3), stimulated growth. An amount of 1 nM EB 1089 and 100 nM 1,25(OH)(2)D(3) inhibited growth with an equal magnitude. The expression of 24OHase was strongly induced by 1,25(OH)(2)D(3) and EB 1089 in OVCAR-3 cells, and analysis of vitamin D metabolites showed the functionality of 24OHase. An inhibition of 24OHase activity with a novel 24OHase inhibitor enhanced growth-inhibiting effects of 1,25(OH)(2)D(3) and suppressed the growth stimulation of 100 nM 25(OH)D(3). We also report the expression of a vitamin D activating enzyme, 1alphaOHase, in 7 ovarian cancer cell lines. The production of 1,25(OH)(2)D(3) in OVCAR-3 cells was low, possibly due to an extensive activity of 24OHase or a low 1alphaOHase activity. These results suggest that in ovarian cancer cells vitamin D metabolizing enzymes might play a key role in modulating the growth response to vitamin D. The possible mitogenic effects of vitamin D should be considered when evaluating treatment of ovarian cancer with vitamin D.


Subject(s)
Calcifediol/pharmacology , Calcitriol/analogs & derivatives , Calcitriol/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Ovarian Neoplasms/enzymology , Steroid Hydroxylases/metabolism , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/antagonists & inhibitors , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Cell Division/drug effects , Cytochrome P-450 Enzyme Inhibitors , Enzyme Inhibitors/pharmacology , Female , Humans , Ovarian Neoplasms/pathology , Steroid Hydroxylases/antagonists & inhibitors , Tumor Cells, Cultured , Vitamin D3 24-Hydroxylase
12.
Int J Cancer ; 108(1): 104-8, 2004 Jan 01.
Article in English | MEDLINE | ID: mdl-14618623

ABSTRACT

Vitamin D inhibits the development and growth of prostate cancer cells. Epidemiologic results on serum vitamin D levels and prostate cancer risk have, however, been inconsistent. We conducted a longitudinal nested case-control study on Nordic men (Norway, Finland and Sweden) using serum banks of 200,000 samples. We studied serum 25(OH)-vitamin D levels of 622 prostate cancer cases and 1,451 matched controls and found that both low (/=80 nmol/l) 25(OH)-vitamin D serum concentrations are associated with higher prostate cancer risk. The normal average serum concentration of 25(OH)-vitamin D (40-60 nmol/l) comprises the lowest risk of prostate cancer. The U-shaped risk of prostate cancer might be due to similar 1,25-dihydroxyvitamin D(3) availability within the prostate: low vitamin D serum concentration apparently leads to a low tissue concentration and to weakened mitotic control of target cells, whereas a high vitamin D level might lead to vitamin D resistance through increased inactivation by enhanced expression of 24-hydroxylase. It is recommended that vitamin D deficiency be supplemented, but too high vitamin D serum level might also enhance cancer development.


Subject(s)
Calcifediol/blood , Prostatic Neoplasms/blood , Adult , Case-Control Studies , Finland , Humans , Longitudinal Studies , Male , Middle Aged , Norway , Risk , Sweden , Vitamin D Deficiency/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...