Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 35(37): 12903-16, 2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26377475

ABSTRACT

The gonadotropin-releasing hormone (GnRH) is the master regulator of fertility and kisspeptin (KP) is a potent trigger of GnRH secretion from GnRH neurons. KP signals via KISS1R, a Gαq/11-coupled receptor, and mice bearing a global deletion of Kiss1r (Kiss1r(-/-)) or a GnRH neuron-specific deletion of Kiss1r (Kiss1r(d/d)) display hypogonadotropic hypogonadism and infertility. KISS1R also signals via ß-arrestin, and in mice lacking ß-arrestin-1 or -2, KP-triggered GnRH secretion is significantly diminished. Based on these findings, we hypothesized that ablation of Gαq/11 in GnRH neurons would diminish but not completely block KP-triggered GnRH secretion and that Gαq/11-independent GnRH secretion would be sufficient to maintain fertility. To test this, Gnaq (encodes Gαq) was selectively inactivated in the GnRH neurons of global Gna11 (encodes Gα11)-null mice by crossing Gnrh-Cre and Gnaq(fl/fl);Gna11(-/-) mice. Experimental Gnaq(fl/fl);Gna11(-/-);Gnrh-Cre (Gnaq(d/d)) and control Gnaq(fl/fl);Gna11(-/-) (Gnaq(fl/fl)) littermate mice were generated and subjected to reproductive profiling. This process revealed that testicular development and spermatogenesis, preputial separation, and anogenital distance in males and day of vaginal opening and of first estrus in females were significantly less affected in Gnaq(d/d) mice than in previously characterized Kiss1r(-/-) or Kiss1r(d/d) mice. Additionally, Gnaq(d/d) males were subfertile, and although Gnaq(d/d) females did not ovulate spontaneously, they responded efficiently to a single dose of gonadotropins. Finally, KP stimulation triggered a significant increase in gonadotropins and testosterone levels in Gnaq(d/d) mice. We therefore conclude that the milder reproductive phenotypes and maintained responsiveness to KP and gonadotropins reflect Gαq/11-independent GnRH secretion and activation of the neuroendocrine-reproductive axis in Gnaq(d/d) mice. SIGNIFICANCE STATEMENT: The gonadotropin-releasing hormone (GnRH) is the master regulator of fertility. Over the last decade, several studies have established that the KISS1 receptor, KISS1R, is a potent trigger of GnRH secretion and inactivation of KISS1R on the GnRH neuron results in infertility. While KISS1R is best understood as a Gαq/11-coupled receptor, we previously demonstrated that it could couple to and signal via non-Gαq/11-coupled pathways. The present study confirms these findings and, more importantly, while it establishes Gαq/11-coupled signaling as a major conduit of GnRH secretion, it also uncovers a significant role for non-Gαq/11-coupled signaling in potentiating reproductive development and function. This study further suggests that by augmenting signaling via these pathways, GnRH secretion can be enhanced to treat some forms of infertility.


Subject(s)
GTP-Binding Protein alpha Subunits/deficiency , Gonadotropin-Releasing Hormone/physiology , Hypogonadism/physiopathology , Infertility, Female/physiopathology , Infertility, Male/physiopathology , Animals , Blastocyst/pathology , Embryonic Development , Female , GTP-Binding Protein alpha Subunits/physiology , Gene Expression Profiling , Genitalia, Female/pathology , Genitalia, Female/physiopathology , Genitalia, Male/pathology , Genitalia, Male/physiopathology , Gonadal Steroid Hormones/metabolism , Gonadotropin-Releasing Hormone/antagonists & inhibitors , Gonadotropins, Pituitary/metabolism , Gonadotropins, Pituitary/pharmacology , Hypogonadism/genetics , Hypogonadism/pathology , Hypothalamo-Hypophyseal System/physiopathology , Hypothalamus/pathology , Infertility, Female/embryology , Infertility, Female/genetics , Infertility, Male/embryology , Infertility, Male/genetics , Kisspeptins/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Oligopeptides/pharmacology , Ovariectomy , Ovulation/drug effects , Peptide Fragments/pharmacology , Peptides/pharmacology , Phenotype , Receptors, G-Protein-Coupled , Receptors, Kisspeptin-1 , Spermatogenesis
2.
Endocrinology ; 155(11): 4433-46, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25147978

ABSTRACT

Hypothalamic GnRH is the master regulator of the neuroendocrine reproductive axis, and its secretion is regulated by many factors. Among these is kisspeptin (Kp), a potent trigger of GnRH secretion. Kp signals via the Kp receptor (KISS1R), a Gαq/11-coupled 7-transmembrane-spanning receptor. Until this study, it was understood that KISS1R mediates GnRH secretion via the Gαq/11-coupled pathway in an ERK1/2-dependent manner. We recently demonstrated that KISS1R also signals independently of Gαq/11 via ß-arrestin and that this pathway also mediates ERK1/2 activation. Because GnRH secretion is ERK1/2-dependent, we hypothesized that KISS1R regulates GnRH secretion via both the Gαq/11- and ß-arrestin-coupled pathways. To test this hypothesis, we measured LH secretion, a surrogate marker of GnRH secretion, in mice lacking either ß-arrestin-1 or ß-arrestin-2. Results revealed that Kp-dependent LH secretion was significantly diminished relative to wild-type mice (P < .001), thus supporting that ß-arrestin mediates Kp-induced GnRH secretion. Based on this, we hypothesized that Gαq/11-uncoupled KISS1R mutants, like L148S, will display Gαq/11-independent signaling. To test this hypothesis, L148S was expressed in HEK 293 cells. and results confirmed that, although strongly uncoupled from Gαq/11, L148S retained the ability to trigger significant Kp-dependent ERK1/2 phosphorylation (P < .05). Furthermore, using mouse embryonic fibroblasts lacking ß-arrestin-1 and -2, we demonstrated that L148S-mediated ERK1/2 phosphorylation is ß-arrestin-dependent. Overall, we conclude that KISS1R signals via Gαq/11 and ß-arrestin to regulate GnRH secretion. This novel and important finding could explain why patients bearing some types of Gαq/11-uncoupled KISS1R mutants display partial gonadotropic deficiency and even a reversal of the condition, idiopathic hypogonadotropic hypogonadism.


Subject(s)
Arrestins/physiology , GTP-Binding Protein alpha Subunits, Gq-G11/physiology , Luteinizing Hormone/metabolism , Receptors, G-Protein-Coupled/physiology , Animals , Arrestins/genetics , Buserelin/pharmacology , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Kisspeptin-1 , Signal Transduction/drug effects , Signal Transduction/genetics , beta-Arrestin 1 , beta-Arrestin 2 , beta-Arrestins
3.
PLoS One ; 5(9): e12964, 2010 Sep 23.
Article in English | MEDLINE | ID: mdl-20886089

ABSTRACT

G protein-coupled receptor 54 (GPR54) is a G(q/11)-coupled 7 transmembrane-spanning receptor (7TMR). Activation of GPR54 by kisspeptin (Kp) stimulates PIP(2) hydrolysis, Ca(2+) mobilization and ERK1/2 MAPK phosphorylation. Kp and GPR54 are established regulators of the hypothalamic-pituitary-gonadal (HPG) axis and loss-of-function mutations in GPR54 are associated with an absence of puberty and hypogonadotropic hypogonadism, thus defining an important role of the Kp/GPR54 signaling system in reproductive function. Given the tremendous physiological and clinical importance of the Kp/GPR54 signaling system, we explored the contributions of the GPR54-coupled G(q/11) and ß-arrestin pathways on the activation of a major downstream signaling molecule, ERK, using G(q/11) and ß-arrestin knockout mouse embryonic fibroblasts. Our study revealed that GPR54 employs the G(q/11) and ß-arrestin-2 pathways in a co-dependent and temporally overlapping manner to positively regulate ERK activity and pERK nuclear localization. We also show that while ß-arrestin-2 potentiates GPR54 signaling to ERK, ß-arrestin-1 inhibits it. Our data also revealed that diminished ß-arrestin-1 and -2 expression in the GT1-7 GnRH hypothalamic neuronal cell line triggered distinct patterns of gene expression following Kp-10 treatment. Thus, ß-arrestin-1 and -2 also regulate distinct downstream responses in gene expression. Finally, we showed that GPR54, when uncoupled from the G(q/11) pathway, as is the case for several naturally occurring GPR54 mutants associated with hypogonadotropic hypogonadism, continues to regulate gene expression in a G protein-independent manner. These new and exciting findings add significantly to our mechanistic understanding of how this important receptor signals intracellularly in response to kisspeptin stimulation.


Subject(s)
Arrestins/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Gene Expression Regulation , Hypothalamus/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Arrestins/genetics , Cell Line , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Hypothalamus/enzymology , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, Kisspeptin-1 , beta-Arrestin 1 , beta-Arrestin 2 , beta-Arrestins
4.
Mol Endocrinol ; 23(12): 2060-74, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19846537

ABSTRACT

Kisspeptin and its receptor, GPR54, are major regulators of the hypothalamic-pituitary-gonadal axis as well as regulators of human placentation and tumor metastases. GPR54 is a G(q/11)-coupled G protein-coupled receptor (GPCR), and activation by kisspeptin stimulates phosphatidy linositol 4, 5-biphosphate hydrolysis, Ca(2+) mobilization, arachidonic acid release, and ERK1/2 MAPK phosphorylation. Physiological evidence suggests that GPR54 undergoes agonist-dependent desensitization, but underlying molecular mechanisms are unknown. Furthermore, very little has been reported on the early events that regulate GPR54 signaling. The lack of information in these important areas led to this study. Here we report for the first time on the role of GPCR serine/threonine kinase (GRK)2 and beta-arrestin in regulating GPR54 signaling in human embryonic kidney (HEK) 293 cells, a model cell system for studying the molecular regulation of GPCRs, and genetically modified MDA MB-231 cells, an invasive breast cancer cell line expressing about 75% less beta-arrestin-2 than the control cell line. Our study reveals that in HEK 293 cells, GPR54 is expressed both at the plasma membrane and intracellularly and also that plasma membrane expression is regulated by cytoplasmic tail sequences. We also demonstrate that GPR54 exhibits constitutive activity, internalization, and association with GRK2 and beta- arrestins-1 and 2 through sequences in the second intracellular loop and cytoplasmic tail of the receptor. We also show that GRK2 stimulates the desensitization of GPR54 in HEK 293 cells and that beta-arrestin-2 mediates GPR54 activation of ERK1/2 in MDA-MB-231 cells. The significance of these findings in developing molecular-based therapies for treating certain endocrine-related disorders is discussed.


Subject(s)
Arrestins/metabolism , Cell Membrane/metabolism , G-Protein-Coupled Receptor Kinase 2/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Cell Line , Cell Line, Tumor , G-Protein-Coupled Receptor Kinase 2/genetics , Humans , Immunoprecipitation , Kisspeptins , Microscopy, Confocal , Oligopeptides/pharmacology , Phosphorylation/drug effects , Phosphorylation/genetics , Protein Binding , Protein Transport/drug effects , Receptors, G-Protein-Coupled/genetics , Receptors, Kisspeptin-1 , Signal Transduction/drug effects , Signal Transduction/genetics , Tumor Suppressor Proteins/genetics , beta-Arrestin 2 , beta-Arrestins
SELECTION OF CITATIONS
SEARCH DETAIL
...