Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 12: 636108, 2021.
Article in English | MEDLINE | ID: mdl-34290694

ABSTRACT

Radiotherapy, the most frequent treatment of oral squamous cell carcinomas (OSCC) besides surgery is employed to kill tumor cells but, radiotherapy may also promote tumor relapse where the immune-suppressive tumor microenvironment (TME) could be instrumental. We established a novel syngeneic grafting model from a carcinogen-induced tongue tumor, OSCC13, to address the impact of radiotherapy on OSCC. This model revealed similarities with human OSCC, recapitulating carcinogen-induced mutations found in smoking associated human tongue tumors, abundant tumor infiltrating leukocytes (TIL) and, spontaneous tumor cell dissemination to the local lymph nodes. Cultured OSCC13 cells and OSCC13-derived tongue tumors were sensitive to irradiation. At the chosen dose of 2 Gy mimicking treatment of human OSCC patients not all tumor cells were killed allowing to investigate effects on the TME. By investigating expression of the extracellular matrix molecule tenascin-C (TNC), an indicator of an immune suppressive TME, we observed high local TNC expression and TIL infiltration in the irradiated tumors. In a TNC knockout host the TME appeared less immune suppressive with a tendency towards more tumor regression than in WT conditions. Altogether, our novel syngeneic tongue OSCC grafting model, sharing important features with the human OSCC disease could be relevant for future anti-cancer targeting of OSCC by radiotherapy and other therapeutic approaches.


Subject(s)
Lymph Nodes/radiation effects , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Tenascin/metabolism , Tongue Neoplasms/radiotherapy , Animals , Cell Line, Tumor , Female , Lymph Nodes/metabolism , Lymph Nodes/pathology , Lymphatic Metastasis , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Neoplasm Transplantation , Radiation Tolerance , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/secondary , Tenascin/genetics , Tongue Neoplasms/genetics , Tongue Neoplasms/metabolism , Tongue Neoplasms/pathology , Transplantation, Isogeneic , Tumor Burden/radiation effects , Tumor Microenvironment
2.
Matrix Biol ; 83: 26-47, 2019 10.
Article in English | MEDLINE | ID: mdl-31288084

ABSTRACT

Metastasis is a major cause of death in cancer patients. The extracellular matrix molecule tenascin-C is a known promoter of metastasis, however the underlying mechanisms are not well understood. To further analyze the impact of tenascin-C on cancer progression we generated MMTV-NeuNT mice that develop spontaneous mammary tumors, on a tenascin-C knockout background. We also developed a syngeneic orthotopic model in which tumor cells derived from a MMTV-NeuNT tumor. Tumor cells were transfected with control shRNA or with shRNA to knockdown tenascin-C expression and, were grafted into the mammary gland of immune competent, wildtype or tenascin-C knockout mice. We show that stromal-derived tenascin-C increases metastasis by reducing apoptosis and inducing the cellular plasticity of cancer cells located in pulmonary blood vessels invasions (BVI), before extravasation. We characterized BVI as organized structures of tightly packed aggregates of proliferating tumor cells with epithelial characteristics, surrounded by Fsp1+ cells, internally located platelets and, a luminal monolayer of endothelial cells. We found extracellular matrix, in particular, tenascin-C, between the stromal cells and the tumor cell cluster. In mice lacking stromal-derived tenascin-C, the organization of pulmonary BVI was significantly affected, revealing novel functions of host-derived tenascin-C in supporting the integrity of the endothelial cell coat, increasing platelet abundance, tumor cell survival, epithelial plasticity, thereby promoting overall lung metastasis. Many effects of tenascin-C observed in BVI including enhancement of cellular plasticity, survival and migration, could be explained by activation of TGF-ß signaling. Finally, in several human cancers, we also observed BVI to be surrounded by an endothelial monolayer and to express tenascin-C. Expression of tenascin-C is specific to BVI and is not observed in lymphatic vascular invasions frequent in breast cancer, which lack an endothelial lining. Given that BVI have prognostic significance for many tumor types, such as shorter cancer patient survival, increased metastasis, vessel occlusion, and organ failure, our data revealing a novel mechanism by which stromal tenascin-C promotes metastasis in human cancer, may have potential for diagnosis and therapy.


Subject(s)
Blood Vessels/pathology , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Mammary Neoplasms, Experimental/pathology , Receptor, ErbB-2/genetics , Tenascin/genetics , Animals , Blood Vessels/metabolism , Cell Line, Tumor , Female , Gene Knockout Techniques , Humans , Lung Neoplasms/blood supply , Lung Neoplasms/genetics , Mammary Neoplasms, Experimental/blood supply , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/metabolism , Mice , Mice, Transgenic , Rats , Signal Transduction , Stromal Cells , Tenascin/metabolism , Transforming Growth Factor beta/metabolism
3.
Medchemcomm ; 7(4): 612-622, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27446528

ABSTRACT

The fatty acid transport proteins (FATP) are classified as members of the Solute Carrier 27 (Slc27) family of proteins based on their ability to function in the transport of exogenous fatty acids. These proteins, when localized to the plasma membrane or at intracellular membrane junctions with the endoplasmic reticulum, function as a gate in the regulated transport of fatty acids and thus represent a therapeutic target to delimit the acquisition of fatty acids that contribute to disease as in the case of fatty acid overload. To date, FATP1, FATP2, and FATP4 have been used as targets in the selection of small molecule inhibitors with the goal of treating insulin resistance and attenuating dietary absorption of fatty acids. Several studies targeting FATP1 and FATP4 were based on the intrinsic acyl CoA synthetase activity of these proteins and not on transport directly. While several classes of compounds were identified as potential inhibitors of fatty acid transport, in vivo studies using a mouse model failed to provide evidence these compounds were effective in blocking or attenuating fatty acid transport. Studies targeting FATP2 employed a naturally occurring splice variant, FATP2b, which lacks intrinsic acyl CoA synthetase due to the deletion of exon 3, yet is fully functional in fatty acid transport. These studies identified two compounds, 5'-bromo-5-phenyl-spiro[3H-1,3,4-thiadiazole-2,3'-indoline]-2'-one), now referred to as Lipofermata, and 2-benzyl-3-(4-chlorophenyl)-5-(4-nitrophenyl)pyrazolo[1,5-a]pyrimidin-7(4H)-one, now called Grassofermata, that are effective fatty acid transport inhibitors both in vitro using a series of model cell lines and in vivo using a mouse model.

4.
Biochem Pharmacol ; 98(1): 167-81, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26394026

ABSTRACT

Chronic elevation of plasma free fatty acid (FFA) levels is commonly associated with obesity, type 2 diabetes, cardiovascular disease and some cancers. Experimental evidence indicates FFA and their metabolites contribute to disease development through lipotoxicity. Previously, we identified a specific fatty acid transport inhibitor CB16.2, a.k.a. Lipofermata, using high throughput screening methods. In this study, efficacy of transport inhibition was measured in four cell lines that are models for myocytes (mmC2C12), pancreatic ß-cells (rnINS-1E), intestinal epithelial cells (hsCaco-2), and hepatocytes (hsHepG2), as well as primary human adipocytes. The compound was effective in inhibiting uptake with IC50s between 3 and 6µM for all cell lines except human adipocytes (39µM). Inhibition was specific for long and very long chain fatty acids but had no effect on medium chain fatty acids (C6-C10), which are transported by passive diffusion. Derivatives of Lipofermata were evaluated to understand structural contributions to activity. Lipofermata prevented palmitate-mediated oxidative stress, induction of BiP and CHOP, and cell death in a dose-dependent manner in hsHepG2 and rnINS-1E cells, suggesting it will prevent induction of fatty acid-mediated cell death pathways and lipotoxic disease by channeling excess fatty acids to adipose tissue and away from liver and pancreas. Importantly, mice dosed orally with Lipofermata were not able to absorb (13)C-oleate demonstrating utility as an inhibitor of fatty acid absorption from the gut.


Subject(s)
Fatty Acids/metabolism , Spiro Compounds/pharmacology , Thiadiazoles/pharmacology , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Biological Transport/drug effects , Cell Line, Tumor , Gene Expression Regulation , Humans , Molecular Structure , Small Molecule Libraries
5.
Chronobiol Int ; 28(5): 458-70, 2011 May.
Article in English | MEDLINE | ID: mdl-21721861

ABSTRACT

Circadian disruption accelerates malignant growth; thus, it should be avoided in anticancer therapy. The circadian disruptive effects of irinotecan, a topoisomerase I inhibitor, was investigated according to dosing time and sex. In previous work, irinotecan achieved best tolerability following dosing at zeitgeber time (ZT) 11 in male and ZT15 in female mice, whereas worst toxicity corresponded to treatment at ZT23 and ZT3 in male and female mice, respectively. Here, irinotecan (50 mg/kg intravenous [i.v.]) was delivered at the sex-specific optimal or worst circadian timing in male and female B6D2F1 mice. Circadian disruption was assessed with rest-activity, body temperature, plasma corticosterone, and liver mRNA expressions of clock genes Rev-erbα, Per2, and Bmal1. Baseline circadian rhythms in rest-activity, body temperature, and plasma corticosterone were more prominent in females as compared to males. Severe circadian disruption was documented for all physiology and molecular clock endpoints in female mice treated at the ZT of worst tolerability. Conversely, irinotecan administration at the ZT of best tolerability induced slight alteration of circadian physiology and clock-gene expression patterns in female mice. In male mice, irinotecan produced moderate alterations of circadian physiology and clock-gene expression patterns, irrespective of treatment ZT. However, the average expression of Rev-erbα, Per2, and Bmal1 were down-regulated 2- to 10-fold with irinotecan at the worst ZT, while being minimally or unaffected at the best ZT, irrespective of sex. Corticosterone secretion increased acutely within 2 h with a sex-specific response pattern, resulting in a ZT-dependent phase-advance or -delay in both sex. The mRNA expressions of irinotecan clock-controlled metabolism genes Ce2, Ugt1a1, and Top1 were unchanged or down-regulated according to irinotecan timing and sex. This study shows that the circadian timing system represents an important toxicity target of irinotecan in female mice, where circadian disruption persists after wrongly timed treatment. As a result, the mechanisms underling cancer chronotherapeutics are expectedly more susceptible to disruption in females as compared to males. Thus, the optimal circadian timing of chemotherapy requires precise determination according to sex, and should involve the noninvasive monitoring of circadian biomarkers.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Camptothecin/analogs & derivatives , Circadian Rhythm/drug effects , Sex Characteristics , Animals , Antineoplastic Agents/adverse effects , Body Temperature/drug effects , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Camptothecin/administration & dosage , Camptothecin/adverse effects , Camptothecin/pharmacology , Corticosterone/blood , Drug Administration Schedule , Female , Gene Expression Regulation/physiology , Irinotecan , Liver/metabolism , Male , Mice , Motor Activity/drug effects
6.
PLoS One ; 6(6): e20393, 2011.
Article in English | MEDLINE | ID: mdl-21674030

ABSTRACT

BACKGROUND: ATP-binding cassette transporter abcc2 is involved in the cellular efflux of irinotecan. The drug is toxic for mouse ileum, where abcc2 is highly expressed. Here, we investigate whether circadian changes in local abcc2 expression participate in the circadian rhythm of irinotecan toxicity for ileum mucosa, and further assess whether genetic background or sex modify this relation. METHODOLOGY/PRINCIPAL FINDINGS: Ileum mucosa was obtained every 3-4 h for 24 h in male and female B6D2F(1) and B6CBAF(1) mice synchronized with light from Zeitgeber Time (ZT)0 to ZT12 alternating with 12 h of darkness. Irinotecan (50 mg/kg i.v. daily for 4 days) was administered at the sex- and strain-specific times corresponding to least (ZT11-15) or largest drug-induced body weight loss (ZT23-03-07). Abcc2 expression was determined with qRT-PCR for mRNA and with immunohistochemistry and confocal microscopy for protein. Histopathologic lesions were graded in ileum tissues obtained 2, 4 or 6 days after treatment. Two- to six-fold circadian changes were demonstrated for mRNA and protein mean expressions of abcc2 in mouse ileum (p<0.05). ZT12 corresponded to high mRNA and protein expressions, with circadian waveforms differing according to genetic background and sex. The proportion of mice spared from ileum lesions varied three-fold according to irinotecan timing, with best tolerability at ZT11-15 (p = 0.00003). Irinotecan was also best tolerated in males (p = 0.05) and in B6CBAF(1) (p = 0.0006). CONCLUSIONS/SIGNIFICANCE: Strain- and sex-dependent circadian patterns in abcc2 expressions displayed robust relations with the chronotolerance of ileum mucosa for irinotecan. This finding has strong potential implications for improving the intestinal tolerability of anticancer drugs through circadian delivery.


Subject(s)
Camptothecin/analogs & derivatives , Circadian Rhythm , Gene Expression Regulation , Ileum/drug effects , Ileum/metabolism , Multidrug Resistance-Associated Proteins/metabolism , Sex Characteristics , Animals , Antineoplastic Agents/adverse effects , Camptothecin/adverse effects , Female , Gene Expression Regulation/drug effects , Ileum/physiology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/physiology , Irinotecan , Male , Mice , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...