Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Biol Fishes ; 106(2): 381-416, 2023.
Article in English | MEDLINE | ID: mdl-36118617

ABSTRACT

Tropical and subtropical coastal flats are shallow regions of the marine environment at the intersection of land and sea. These regions provide myriad ecological goods and services, including recreational fisheries focused on flats-inhabiting fishes such as bonefish, tarpon, and permit. The cascading effects of climate change have the potential to negatively impact coastal flats around the globe and to reduce their ecological and economic value. In this paper, we consider how the combined effects of climate change, including extremes in temperature and precipitation regimes, sea level rise, and changes in nutrient dynamics, are causing rapid and potentially permanent changes to the structure and function of tropical and subtropical flats ecosystems. We then apply the available science on recreationally targeted fishes to reveal how these changes can cascade through layers of biological organization-from individuals, to populations, to communities-and ultimately impact the coastal systems that depend on them. We identify critical gaps in knowledge related to the extent and severity of these effects, and how such gaps influence the effectiveness of conservation, management, policy, and grassroots stewardship efforts.

2.
PLoS One ; 15(8): e0230985, 2020.
Article in English | MEDLINE | ID: mdl-32845879

ABSTRACT

Spearfishing is currently the primary approach for removing invasive lionfish (Pterois volitans/miles) to mitigate their impacts on western Atlantic marine ecosystems, but a substantial portion of lionfish spawning biomass is beyond the depth limits of SCUBA divers. Innovative technologies may offer a means to target deepwater populations and allow for the development of a lionfish trap fishery, but the removal efficiency and potential environmental impacts of lionfish traps have not been evaluated. We tested a collapsible, non-containment trap (the 'Gittings trap') near artificial reefs in the northern Gulf of Mexico. A total of 327 lionfish and 28 native fish (four were species protected with regulations) recruited (i.e., were observed within the trap footprint at the time of retrieval) to traps during 82 trap sets, catching 144 lionfish and 29 native fish (one more than recruited, indicating detection error). Lionfish recruitment was highest for single (versus paired) traps deployed <15 m from reefs with a 1-day soak time, for which mean lionfish and native fish recruitment per trap were approximately 5 and 0.1, respectively. Lionfish from traps were an average of 19 mm or 62 grams larger than those caught spearfishing. Community impacts from Gittings traps appeared minimal given that recruitment rates were >10X higher for lionfish than native fishes and that traps did not move on the bottom during two major storm events, although further testing will be necessary to test trap movement with surface floats. Additional research should also focus on design and operational modifications to improve Gittings trap deployment success (68% successfully opened on the seabed) and reduce lionfish escapement (56% escaped from traps upon retrieval). While removal efficiency for lionfish demonstrated by traps (12-24%) was far below that of spearfishing, Gittings traps appear suitable for future development and testing on deepwater natural reefs, which constitute >90% of the region's reef habitat.


Subject(s)
Conservation of Natural Resources/methods , Environmental Restoration and Remediation/methods , Introduced Species/trends , Animals , Biomass , Coral Reefs , Ecosystem , Fishes/growth & development , Gulf of Mexico , Perciformes/growth & development , Population Density , Population Dynamics , Predatory Behavior
3.
Sci Rep ; 10(1): 1934, 2020 02 04.
Article in English | MEDLINE | ID: mdl-32020056

ABSTRACT

Invasive Indo-Pacific lionfish Pterois volitans/miles have become well-established in many western Atlantic marine habitats and regions. However, high densities and low genetic diversity could make their populations susceptible to disease. We examined changes in northern Gulf of Mexico (nGOM) lionfish populations following the emergence of an ulcerative skin disease in August 2017, when estimated disease prevalence was as high as 40%. Ulcerated female lionfish had 9% lower relative condition compared to non-ulcerated females. Changes in lionfish size composition indicated a potential recruitment failure in early summer 2018, when the proportion of new recruits declined by >80%. Remotely operated vehicle surveys during 2016-2018 indicated lionfish population density declined in 2018 by 75% on natural reefs. The strongest declines (77-79%) in lionfish density were on high-density (>25 lionfish per 100 m2) artificial reefs, which declined to similar levels as low-density (<15 lionfish per 100 m2) artificial reefs that had prior lionfish removals. Fisheries-dependent sampling indicated lionfish commercial spearfishing landings, commercial catch per unit effort (CPUE), and lionfish tournament CPUE also declined approximately 50% in 2018. Collectively, these results provide correlative evidence for density-dependent epizootic population control, have implications for managing lionfish and impacted native species, and improve our understanding of biological invasions.


Subject(s)
Fish Diseases/epidemiology , Fishes , Introduced Species/statistics & numerical data , Animals , Communicable Diseases, Emerging/mortality , Communicable Diseases, Emerging/veterinary , Coral Reefs , Female , Fish Diseases/mortality , Gulf of Mexico , Male , Prevalence , Skin Ulcer/mortality , Skin Ulcer/veterinary
4.
PLoS One ; 15(1): e0228254, 2020.
Article in English | MEDLINE | ID: mdl-31978207

ABSTRACT

Warsaw grouper, Hyporthodus nigritus, is a western Atlantic Ocean species typically found at depths between 55 and 525 m. It is listed as a species of concern by the U.S. National Marine Fisheries Service and as near threatened by the International Union for the Conservation of Nature. However, little information exists on the species' life history in the northern Gulf of Mexico (nGOM) and its stock status in that region is currently unknown. Age of nGOM Warsaw grouper was investigated via opaque zone counts in otolith thin sections (max age = 61 y), and then the bomb 14C chronometer was employed to validate the accuracy of age estimates. Otolith cores (n = 14) were analyzed with accelerator mass spectrometry and resulting Δ14C values overlain on a loess regression computed for a regional coral and known-age red snapper Δ14C time series. Residual analysis between predicted Δ14C values from the loess regression versus Warsaw grouper otolith core Δ14C values indicated no significant difference in the two data series. Therefore, the accuracy of otolith-based aging was validated, which enabled growth and longevity estimates to be made for nGOM Warsaw grouper. Dissolved inorganic carbon (DIC) Δ14C values collected from the nGOM support the inference that juvenile Warsaw grouper occur in shelf waters (<200 m) since DIC Δ14C values in this depth range are enriched in 14C and similar to the Δ14C values from otolith cores. A Bayesian model was fit to fishery-dependent age composition data and produced von Bertalanffy growth function parameters of L∞ = 1,533 mm, k = 0.14 y-1, and t0 = 1.82 y. Fishing mortality also was estimated in the model, which resulted in a ratio of fishing to natural mortality of 5.1:1. Overall, study results indicate Warsaw grouper is a long-lived species that is estimated to have experienced significant overfishing in the nGOM, with the age of most landed fish being <10 y.


Subject(s)
Otolithic Membrane/chemistry , Perciformes/physiology , Radiometric Dating/methods , Animals , Bayes Theorem , Carbon Radioisotopes/chemistry , Fisheries , Gulf of Mexico , Longevity , Mass Spectrometry , Perciformes/growth & development
5.
PLoS One ; 13(11): e0208126, 2018.
Article in English | MEDLINE | ID: mdl-30485361

ABSTRACT

Understanding the distribution and intensity of recreational boating activities is key for managing safety as well as environmental and social impacts. Recreational boating is a very important component of the diverse maritime traffic in the southeastern United States. The seasonal distribution of offshore recreational vessels in waters off the coast of Northeast Florida and Southeast Georgia was modeled using several techniques (Poisson, negative binomial, hurdle and zero inflated modes, generalized additive models, and generalized mixed models) and by combining map-based information provided by recreational boaters with environmental and geographical variables to find the most parsimonious model. Based on model performance, the final model analysis was conducted using a GAM approach with a negative binomial distribution. The best seasonal models explained between 86.1%- 88.6% of the total deviance. For most seasons, a model that included latitude, longitude, interaction between latitude and longitude, chlorophyll a concentration, and abundance of artificial reefs resulted in the best fit. The only exception was the model for the summer season, which did not include chlorophyll a concentration. Given the complexity of the study area, with a number of maritime activities and several marine species co-occurring, these models could provide information to analyze the distribution and overlap of recreational boating trips with other maritime activities (e.g., cargo ships, commercial vessels) and species (e.g., right whales, sea turtles, sharks). These analyses could be used to decrease harmful interactions among these groups and activities.


Subject(s)
Ecosystem , Recreation , Ships , Animals , Chlorophyll A/analysis , Humans , Safety Management , Seasons , Southeastern United States , Temperature
6.
Transgenic Res ; 20(3): 583-97, 2011 Jun.
Article in English | MEDLINE | ID: mdl-20878546

ABSTRACT

Genetically modified strains usually are generated within defined genetic backgrounds to minimize variation for the engineered characteristic in order to facilitate basic research investigations or for commercial application. However, interactions between transgenes and genetic background have been documented in both model and commercial agricultural species, indicating that allelic variation at transgene-modifying loci are not uncommon in genomes. Engineered organisms that have the potential to allow entry of transgenes into natural populations may cause changes to ecosystems via the interaction of their specific phenotypes with ecosystem components and services. A transgene introgressing through natural populations is likely to encounter a range of natural genetic variation (among individuals or sub-populations) that could result in changes in phenotype, concomitant with effects on fitness and ecosystem consequences that differ from that seen in the progenitor transgenic strain. In the present study, using a growth hormone transgenic salmon example, we have modeled selection of modifier loci (single and multiple) in the presence of a transgene and have found that accounting for genetic background can significantly affect the persistence of transgenes in populations, potentially reducing or reversing a "Trojan gene" effect. Influences from altered life history characteristics (e.g., developmental timing, age of maturation) and compensatory demographic/ecosystem controls (e.g., density dependence) also were found to have a strong influence on transgene effects. Further, with the presence of a transgene in a population, genetic backgrounds were found to shift in non-transgenic individuals as well, an effect expected to direct phenotypes away from naturally selected optima. The present model has revealed the importance of understanding effects of selection for background genetics on the evolution of phenotypes in populations harbouring transgenes.


Subject(s)
Animals, Genetically Modified/growth & development , Genetic Variation , Growth Hormone/genetics , Salmon/growth & development , Selection, Genetic , Animals , Animals, Genetically Modified/genetics , Biological Evolution , Ecosystem , Growth Hormone/metabolism , Models, Genetic , Phenotype , Salmon/genetics , Transgenes/genetics , Transgenes/physiology
7.
Plant Physiol ; 138(3): 1310-7, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16010005

ABSTRACT

The SOL Genomics Network (SGN; http://sgn.cornell.edu) is a rapidly evolving comparative resource for the plants of the Solanaceae family, which includes important crop and model plants such as potato (Solanum tuberosum), eggplant (Solanum melongena), pepper (Capsicum annuum), and tomato (Solanum lycopersicum). The aim of SGN is to relate these species to one another using a comparative genomics approach and to tie them to the other dicots through the fully sequenced genome of Arabidopsis (Arabidopsis thaliana). SGN currently houses map and marker data for Solanaceae species, a large expressed sequence tag collection with computationally derived unigene sets, an extensive database of phenotypic information for a mutagenized tomato population, and associated tools such as real-time quantitative trait loci. Recently, the International Solanaceae Project (SOL) was formed as an umbrella organization for Solanaceae research in over 30 countries to address important questions in plant biology. The first cornerstone of the SOL project is the sequencing of the entire euchromatic portion of the tomato genome. SGN is collaborating with other bioinformatics centers in building the bioinformatics infrastructure for the tomato sequencing project and implementing the bioinformatics strategy of the larger SOL project. The overarching goal of SGN is to make information available in an intuitive comparative format, thereby facilitating a systems approach to investigations into the basis of adaptation and phenotypic diversity in the Solanaceae family, other species in the Asterid clade such as coffee (Coffea arabica), Rubiaciae, and beyond.


Subject(s)
Databases, Nucleic Acid , Genome, Plant , Solanaceae/genetics , Arabidopsis/genetics , Capsicum/genetics , Computational Biology/methods , DNA, Plant/genetics , Information Storage and Retrieval , Solanum lycopersicum/genetics , Solanum melongena/genetics , Solanum tuberosum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...