Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(9): 10727-10737, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38463303

ABSTRACT

In this study, a straightforward, eco-friendly, and facile method for synthesizing iron oxide nanoparticles (IONPs) utilizing Piper chaba steam extract as a reducing and stabilizing agent has been demonstrated. The formation of stable IONPs coated with organic moieties was confirmed from UV-vis, FTIR, and EDX spectroscopy and DLS analysis. The produced IONPs are sufficiently crystalline to be superparamagnetic having a saturation magnetization value of 58 emu/g, and their spherical form and size of 9 nm were verified by XRD, VSM, SEM, and TEM investigations. In addition, the synthesized IONPs exhibited notable effectiveness in the removal of Congo Red (CR) dye with a maximum adsorption capacity of 88 mg/g. The adsorption kinetics followed pseudo-second-order kinetics, meaning the adsorption of CR on IONPs is mostly controlled by chemisorption. The adsorption isotherms of CR on the surface of IONPs follow the Langmuir isotherm model, indicating the monolayer adsorption on the homogeneous surface of IONPs through adsorbate-adsorbent interaction. The IONPs have revealed good potential for their reusability, with the adsorption efficiency remaining at about 85% after five adsorption-desorption cycles. The large-scale, safe, and cost-effective manufacturing of IONPs is made possible by this environmentally friendly process.

2.
Dalton Trans ; 49(8): 2652-2660, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-32043108

ABSTRACT

An air-stable heterometallic Bi-Pt complex with the formula [BiPt(SAc)5]n (1; SAc = thioacetate) was synthesized. The crystal structure, natural bond orbital (NBO) and local orbital locator (LOL) analyses, localized orbital bonding analysis (LOBA), and X-ray absorption fine structure (XAFS) measurements were used to confirm the existence of Bi-Pt bonding and an ionic cage of O atoms surrounding the Bi ion. From the cyclic voltammetry (CV) and controlled potential electrolysis (CPE) experiments, 1 in tetrahydrofuran reduced CO2 to CO, with a faradaic efficiency (FE) of 92% and a turnover frequency (TOF) of 8 s-1 after 30 min of CPE at -0.79 V vs. NHE. The proposed mechanism includes an energetically favored pathway via the ionic cage, which is supported by the results of DFT calculations and reflectance infrared spectroelectrochemistry data.

3.
Dalton Trans ; 47(33): 11313-11316, 2018 Aug 21.
Article in English | MEDLINE | ID: mdl-30058663

ABSTRACT

A binary system consisting of a ditopic planar pseudo-pincer ligand (qlca = quinoline-2-carbaldehyde (pyridine-2-carbonyl) hydrazone) coordinated to two metal centres affording [{Ru(bpy)2}(µ-qlca)NiCl2]Cl·4H2O·CH3OH (2) (bpy = 2,2'-bipyridine) is reported. The Ni2+ moiety acts as the electrocatalytic active site for CO2 reduction to CO. The turnover frequency (TOF) increased from 0.83 s-1 for [Ni(qlca)Cl2] (3) to 120 s-1 for 2, and the overpotential is 350 mV less than that for 3 due to the electronic influence of the {Ru(bpy)2}2+ moiety on the catalytic active site.

SELECTION OF CITATIONS
SEARCH DETAIL
...