Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 3680, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37369668

ABSTRACT

In vitro, ACE2 translocates to the nucleus to induce SARS-CoV-2 replication. Here, using digital spatial profiling of lung tissues from SARS-CoV-2-infected golden Syrian hamsters, we show that a specific and selective peptide inhibitor of nuclear ACE2 (NACE2i) inhibits viral replication two days after SARS-CoV-2 infection. Moreover, the peptide also prevents inflammation and macrophage infiltration, and increases NK cell infiltration in bronchioles. NACE2i treatment increases the levels of the active histone mark, H3K27ac, restores host translation in infected hamster bronchiolar cells, and leads to an enrichment in methylated ACE2 in hamster bronchioles and lung macrophages, a signature associated with virus protection. In addition, ACE2 methylation is increased in myeloid cells from vaccinated patients and associated with reduced SARS-CoV-2 spike protein expression in monocytes from individuals who have recovered from infection. This protective epigenetic scarring of ACE2 is associated with a reduced latent viral reservoir in monocytes/macrophages and enhanced immune protection against SARS-CoV-2. Nuclear ACE2 may represent a therapeutic target independent of the variant and strain of viruses that use the ACE2 receptor for host cell entry.


Subject(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animals , Humans , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Lung/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Peptides/metabolism , Epigenesis, Genetic
2.
J Appl Physiol (1985) ; 105(4): 1114-26, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18703762

ABSTRACT

The objective was to evaluate the pulmonary disposition of the ubiquinone homolog coenzyme Q(1) (CoQ(1)) on passage through lungs of normoxic (exposed to room air) and hyperoxic (exposed to 85% O(2) for 48 h) rats. CoQ(1) or its hydroquinone (CoQ(1)H(2)) was infused into the arterial inflow of isolated, perfused lungs, and the venous efflux rates of CoQ(1)H(2) and CoQ(1) were measured. CoQ(1)H(2) appeared in the venous effluent when CoQ(1) was infused, and CoQ(1) appeared when CoQ(1)H(2) was infused. In normoxic lungs, CoQ(1)H(2) efflux rates when CoQ(1) was infused decreased by 58 and 33% in the presence of rotenone (mitochondrial complex I inhibitor) and dicumarol [NAD(P)H-quinone oxidoreductase 1 (NQO1) inhibitor], respectively. Inhibitor studies also revealed that lung CoQ(1)H(2) oxidation was via mitochondrial complex III. In hyperoxic lungs, CoQ(1)H(2) efflux rates when CoQ(1) was infused decreased by 23% compared with normoxic lungs. Based on inhibitor effects and a kinetic model, the effect of hyperoxia could be attributed predominantly to 47% decrease in the capacity of complex I-mediated CoQ(1) reduction, with no change in the other redox processes. Complex I activity in lung homogenates was also lower for hyperoxic than for normoxic lungs. These studies reveal that lung complexes I and III and NQO1 play a dominant role in determining the vascular concentration and redox status of CoQ(1) during passage through the pulmonary circulation, and that exposure to hyperoxia decreases the overall capacity of the lung to reduce CoQ(1) to CoQ(1)H(2) due to a depression in complex I activity.


Subject(s)
Hyperoxia/enzymology , Lung/enzymology , Oxidoreductases/metabolism , Pulmonary Circulation , Ubiquinone/blood , Animals , Disease Models, Animal , Electron Transport Complex I/metabolism , Electron Transport Complex III/metabolism , Enzyme Inhibitors/pharmacology , Hyperoxia/physiopathology , Kinetics , Lung/blood supply , Lung/drug effects , Mitochondria/enzymology , Models, Cardiovascular , NAD(P)H Dehydrogenase (Quinone)/metabolism , Oxidation-Reduction , Oxidoreductases/antagonists & inhibitors , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...