Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Sci Rep ; 14(1): 11707, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38777818

ABSTRACT

Silver nanoparticles (AgNPs) have gained much attention due to their unique physical, and chemical properties. Integration of phytochemicals in nanoformulation might have higher applicability in healthcare. Current work demonstrates the synthesis of green AgNPs with O. gratissimum (gr-AgNPs) O. tenuiflorum (te-AgNPs) and O. americanum (am-AgNPs) followed by an evaluation of their antimicrobial and anticancer properties. SEM analysis revealed spherical-shaped particles with average particle sizes of 69.0 ± 5 nm for te-AgNPs, 46.9 ± 9 nm for gr-AgNPs, and 58.5 ± 18.7 nm for am-AgNPs with a polydispersity index below 0.4. The synthesized am-AgNPs effectively inhibited Klebsiella pneumonia, Escherichia coli, Staphylococcus aureus, Aspergillus niger, and Candida albicans with 23 ± 1.58 mm, 20 ± 1.68 mm, 22 ± 1.80 mm, 26 ± 1.85 mm, and 22 ± 1.40 nm of zone of inhibition respectively. Synthesized AgNPs also induced apoptotic cell death in MCF-7 in concentration-dependent manner. IC50 values for am-AgNPs, te-AgNPs, and gr-AgNPs were 14.78 ± 0.89 µg, 18.04 ± 0.63 and 15.41 ± 0.37 µg respectively which suggested that am-AgNPs were the most effective against cancer. At higher dose size (20 µg) AgNPs were equally effective to commercial standard Doxorubicin (DOX). In comparison to te-AgNPs and gr-AgNPs, am-AgNPs have higher in vitro anticancer and antimicrobial effects. The work reported Ocimum americanum for its anticancer properties with chemical profile (GCMS) and compared it with earlier reported species. The activity against microbial pathogens and selected cancer cells clearly depicted that these species have distinct variations in activity. The results have also emphasized on higher potential of biogenic silver nanoparticles in healthcare but before formulation of commercial products, detailed analysis is required with human and animal models.


Subject(s)
Antineoplastic Agents , Green Chemistry Technology , Metal Nanoparticles , Ocimum , Silver , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Humans , Green Chemistry Technology/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Ocimum/chemistry , MCF-7 Cells , Microbial Sensitivity Tests , Plant Extracts/chemistry , Plant Extracts/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Apoptosis/drug effects , Particle Size
2.
Pathology ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38670916

ABSTRACT

Forecasting COVID-19 waves helps with public health planning and resource allocation. Cycle threshold (Ct) values obtained from positive SARS-CoV-2 nucleic acid amplification test (NAAT) results offer limited value for individual patient management, but real-time analysis of temporal trends of aggregated Ct values may provide helpful information to predict the trajectories of COVID-19 waves in the community. Ct value trends on 59,609 SARS-CoV-2 NAAT-positive results from 574,403 tests using a single testing assay system, between September 2021 and January 2023, were examined to monitor the trend of the proportion of positive NAAT with lower Ct values (≤28) in relation to changing COVID-19 case numbers over time. We applied regression with autoregressive integrated moving average errors modelling approach to study the relation between Ct values and case counts. We also developed an insight product to monitor the temporal trends with Ct values obtained from SARS-CoV-2 NAAT-positive results. In this study, the proportion of lower Ct values preceded by a range of 7-32 days the rising population COVID-19 testing rate reflecting onset of a COVID-19 wave. Monitoring population Ct values may assist in predicting increased disease activity.

3.
Crit Rev Biotechnol ; : 1-19, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38163946

ABSTRACT

Spent grains are one of the lignocellulosic biomasses available in abundance, discarded by breweries as waste. The brewing process generates around 25-30% of waste in different forms and spent grains alone account for 80-85% of that waste, resulting in a significant global waste volume. Despite containing essential nutrients, i.e., carbohydrates, fibers, proteins, fatty acids, lipids, minerals, and vitamins, efficient and economically viable valorization of these grains is lacking. Microbial fermentation enables the valorization of spent grain biomass into numerous commercially valuable products used in energy, food, healthcare, and biomaterials. However, the process still needs more investigation to overcome challenges, such as transportation, cost-effective pretreatment, and fermentation strategy. to lower the product cost and to achieve market feasibility and customer affordability. This review summarizes the potential of spent grains valorization via microbial fermentation and associated challenges.

4.
Chem Res Toxicol ; 36(12): 1834-1863, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38059476

ABSTRACT

Edibles are the only source of nutrients and energy for humans. However, ingredients of edibles have undergone many physicochemical changes during preparation and storage. Aging, hydrolysis, oxidation, and rancidity are some of the major changes that not only change the native flavor, texture, and taste of food but also destroy the nutritive value and jeopardize public health. The major reasons for the production of harmful metabolites, chemicals, and toxins are poor processing, inappropriate storage, and microbial spoilage, which are lethal to consumers. In addition, the emergence of new pollutants has intensified the need for advanced and rapid food analysis techniques to detect such toxins. The issue with the detection of toxins in food samples is the nonvolatile nature and absence of detectable chromophores; hence, normal conventional techniques need additional derivatization. Mass spectrometry (MS) offers high sensitivity, selectivity, and capability to handle complex mixtures, making it an ideal analytical technique for the identification and quantification of food toxins. Recent technological advancements, such as high-resolution MS and tandem mass spectrometry (MS/MS), have significantly improved sensitivity, enabling the detection of food toxins at ultralow levels. Moreover, the emergence of ambient ionization techniques has facilitated rapid in situ analysis of samples with lower time and resources. Despite numerous advantages, the widespread adoption of MS in routine food safety monitoring faces certain challenges such as instrument cost, complexity, data analysis, and standardization of methods. Nevertheless, the continuous advancements in MS-technology and its integration with complementary techniques hold promising prospects for revolutionizing food safety monitoring. This review discusses the application of MS in detecting various food toxins including mycotoxins, marine biotoxins, and plant-derived toxins. It also explores the implementation of untargeted approaches, such as metabolomics and proteomics, for the discovery of novel and emerging food toxins, enhancing our understanding of potential hazards in the food supply chain.


Subject(s)
Mycotoxins , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Marine Toxins , Food Analysis , Reference Standards
5.
Molecules ; 28(20)2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37894581

ABSTRACT

Breast cancer is one of the deadliest diseases in women with a mortality rate of 6.6%. Adverse effects of synthetic drugs have directed research toward safer alternatives such as natural compounds. This study focused on Psydrax dicoccos Gaertn, an evergreen tree abundantly distributed in Tamil Nadu (India) for its possible application against breast cancer cells. P. dicoccos leaf methanol extract, found within a wide range of phytochemicals, demonstrated cytotoxic effects against MCF7 breast cancer cells at IC50 of 34 µg/mL. The extract exhibited good antioxidant activities against DPPH• (62%) and ABTS•+ (80%), as well as concentration-dependent (100-800 µg/mL) anti-inflammatory potential of 18-60% compared to standards, ascorbic acid or aspirin, respectively. Moreover, even low extract concentrations (10 µg/mL) inhibited the growth of Escherichia coli (1.9 ± 0.6 mm) and Pseudomonas aeruginosa (2.3 ± 0.7 mm), thus showing high antimicrobial and anti-inflammatory potential. GC-MS and LC-MS analyses identified 31 and 16 components, respectively, of which selected compounds were used to evaluate the interaction between key receptors (AKT-1, COX-2, and HER-2) of breast cancer based on binding energy (ΔG) and inhibition constant (Ki). The results indicate that bioactive compounds from P. dicoccos have potential against breast cancer cells, but further evaluations are needed.


Subject(s)
Anti-Infective Agents , Breast Neoplasms , Female , Humans , Plant Extracts/chemistry , India , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Antioxidants/chemistry , Phytochemicals/pharmacology , Anti-Inflammatory Agents/pharmacology
6.
Am J Manag Care ; 29(8): e229-e234, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37616150

ABSTRACT

OBJECTIVES: Readmission is common and costly for hospitalized Medicaid patients with diabetes. We aimed to develop a model predicting risk of 30-day readmission in Medicaid patients with diabetes hospitalized for any cause. STUDY DESIGN: Using 2016-2019 Medicaid claims from 7 US states, we identified patients who (1) had a diagnosis of diabetes or were prescribed any diabetes drug, (2) were hospitalized for any cause, and (3) were discharged to home or to a nonhospice facility. For each encounter, we assessed whether the patient was readmitted within 30 days of discharge. METHODS: Applying least absolute shrinkage and selection operator variable selection, we included demographic data and claims history in a logistic regression model to predict 30-day readmission. We evaluated model fit graphically and measured predictive accuracy by the area under the receiver operating characteristic curve (AUROC). RESULTS: Among 69,640 eligible patients, there were 129,170 hospitalizations, of which 29,410 (22.8%) were 30-day readmissions. The final model included age, sex, age-sex interaction, past diagnoses, US state of admission, number of admissions in the preceding year, index admission type, index admission diagnosis, discharge status, length of stay, and length of stay-sex interaction. The observed vs predicted plot showed good fit. The estimated AUROC of 0.761 was robust in analyses that assessed sensitivity to a range of model assumptions. CONCLUSIONS: Our model has moderate power for identifying hospitalized Medicaid patients with diabetes who are at high risk of readmission. It is a template for identifying patients at risk of readmission and for adjusting comparisons of 30-day readmission rates among sites or over time.


Subject(s)
Diabetes Mellitus , Patient Readmission , United States , Humans , Medicaid , Diabetes Mellitus/epidemiology , Diabetes Mellitus/therapy , Hospitalization , Hypoglycemic Agents
7.
Polymers (Basel) ; 15(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37050415

ABSTRACT

Microbial exopolysaccharides (EPSs), e.g., xanthan, dextran, gellan, curdlan, etc., have significant applications in several industries (pharma, food, textiles, petroleum, etc.) due to their biocompatibility, nontoxicity, and functional characteristics. However, biodegradability, poor cell adhesion, mineralization, and lower enzyme activity are some other factors that might hinder commercial applications in healthcare practices. Some EPSs lack biological activities that make them prone to degradation in ex vivo, as well as in vivo environments. The blending of EPSs with other natural and synthetic polymers can improve the structural, functional, and physiological characteristics, and make the composites suitable for a diverse range of applications. In comparison to EPS, composites have more mechanical strength, porosity, and stress-bearing capacity, along with a higher cell adhesion rate, and mineralization that is required for tissue engineering. Composites have a better possibility for biomedical and healthcare applications and are used for 2D and 3D scaffold fabrication, drug carrying and delivery, wound healing, tissue regeneration, and engineering. However, the commercialization of these products still needs in-depth research, considering commercial aspects such as stability within ex vivo and in vivo environments, the presence of biological fluids and enzymes, degradation profile, and interaction within living systems. The opportunities and potential applications are diverse, but more elaborative research is needed to address the challenges. In the current article, efforts have been made to summarize the recent advancements in applications of exopolysaccharide composites with natural and synthetic components, with special consideration of pharma and healthcare applications.

8.
World J Microbiol Biotechnol ; 39(4): 102, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36797527

ABSTRACT

Xylitol, a sugar substitute, is widely used in various food formulations and finds a steady global market. In this study, xylitol crystals were produced from corncob by fermentation (as an alternative to the chemical catalytic process) by a GRAS yeast Pichia caribbica MTCC 5703 and characterized in detail for their purity and presence of any possible contaminant that may adversely affect mammalian cell growth and proliferation. The acute and chronic oral toxicity trials demonstrated no gross pathological changes with average weekly weight gain in female Wistar rats at high xylitol loading (LD50 > 10,000 mg/kg body weight). The clinical chemistry analysis supported the evidence of no dose-dependent effect by analyzing blood biochemical parameters. The finding suggests the possible application of the crystals (> 98% purity) as a food-grade ingredient for commercial manufacture pending human trials.


Subject(s)
Xylitol , Zea mays , Rats , Humans , Animals , Xylitol/toxicity , Zea mays/chemistry , Biomass , Rats, Wistar , Fermentation , Xylose , Mammals
10.
Fam Pract ; 40(2): 338-344, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36082680

ABSTRACT

BACKGROUND: Continuity of care (CoC) is an important component of health care delivery that can have cost implications and improve patient outcomes. We analysed data obtained from the Department of Veterans Affairs to examine the relationship between CoC and use of image-oriented diagnostic tests in patients with comorbid chronic conditions. METHODS: A longitudinal, retrospective cohort study involving participants ≥18 years old, with comorbid diabetes and chronic kidney disease. We used a multivariate linear regression model to test whether greater care continuity, measured using a care continuity index (CCI), is associated with less frequent use of diagnostic tests. RESULTS: Total of 267,442 patients and 8,142,036 tests were included. Of the diagnostic tests we chose to evaluate, the 4 most frequently ordered tests were X-ray (45.6%), electrocardiogram (EKG, 16.8%), computerized tomography (CT, 13.4%), and magnetic resonance imaging (MRI, 3.4%). Overall, greater CCI was associated with fewer use of tests (P < 0.001). A 1 standard deviation (SD, 0.27) increase in CCI was associated with 4.2% decrease (P < 0.001) in number of tests. But a mixed pattern existed. For X-ray and EKG, greater continuity was associated with less testing, 6.2% (P < 0.001) and 3.3% (P < 0.05) reductions, respectively. Whereas, for CT and MRI, greater continuity was associated with more testing, 2.3% (P < 0.001) and 1.4% increases (P < 0.01), respectively. CONCLUSION: Overall, greater CoC was associated with fewer use of tests, representing a greater presumed efficiency of care. This has implications for designing health care delivery.


Subject(s)
Diabetes Mellitus , Veterans , Humans , Adolescent , Retrospective Studies , Continuity of Patient Care , Diabetes Mellitus/diagnosis , Diabetes Mellitus/epidemiology , Comorbidity
11.
Proc Natl Acad Sci U S A ; 119(33): e2207829119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35943988

ABSTRACT

Although patients generally prefer oral drug delivery to injections, low permeability of the gastrointestinal tract makes this method impossible for most biomacromolecules. One potential solution is codelivery of macromolecules, including therapeutic proteins or nucleic acids, with intestinal permeation enhancers; however, enhancer use has been limited clinically by modest efficacy and toxicity concerns surrounding long-term administration. Here, we hypothesized that plant-based foods, which are well tolerated by the gastrointestinal tract, may contain compounds that enable oral macromolecular absorption without causing adverse effects. Upon testing more than 100 fruits, vegetables, and herbs, we identified strawberry and its red pigment, pelargonidin, as potent, well-tolerated enhancers of intestinal permeability. In mice, an oral capsule formulation comprising pelargonidin and a 1 U/kg dose of insulin reduced blood glucose levels for over 4 h, with bioactivity exceeding 100% relative to subcutaneous injection. Effects were reversible within 2 h and associated with actin and tight junction rearrangement. Furthermore, daily dosing of mice with pelargonidin for 1 mo resulted in no detectable side effects, including weight loss, tissue damage, or inflammatory responses. These data suggest that pelargonidin is an exceptionally effective enhancer of oral protein uptake that may be safe for routine pharmaceutical use.


Subject(s)
Anthocyanins , Fragaria , Intestinal Absorption , Intestines , Proteins , Administration, Oral , Animals , Anthocyanins/chemistry , Anthocyanins/pharmacology , Fragaria/chemistry , Insulin/administration & dosage , Insulin/pharmacokinetics , Intestinal Absorption/drug effects , Intestines/drug effects , Intestines/metabolism , Mice , Permeability , Proteins/administration & dosage , Proteins/pharmacokinetics
12.
Bioresour Technol ; 358: 127437, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35680087

ABSTRACT

Urbanization and pollution are the major issues of the current time own to the exhaustive consumption of fossil fuels which have a detrimental effect on the nation's economies and air quality due to greenhouse gas (GHG) emissions and shortage of energy reserves. Algae, an autotrophic organism provides a green substitute for energy as well as commercial products. Algal extracts become an efficient source for bioactive compounds having anti-microbial, anti-oxidative, anti-inflammatory, and anti-cancerous potential. Besides the conventional approach, residual biomass from any algal-based process might act as a renewable substrate for fermentation. Likewise, lignocellulosic biomass, algal biomass can also be processed for sugar recovery by different pre-treatment strategies like acid and alkali hydrolysis, microwave, ionic liquid, and ammonia fiber explosion, etc. Residual algal biomass hydrolysate can be used as a feedstock to produce bioenergy (biohydrogen, biogas, methane) and biochemicals (organic acids, polyhydroxyalkanoates) via microbial fermentation.


Subject(s)
Biofuels , Methane , Biomass , Fermentation , Hydrolysis
13.
IEEE Trans Image Process ; 31: 3479-3493, 2022.
Article in English | MEDLINE | ID: mdl-35533161

ABSTRACT

Digital Rock Physics leverages advances in digital image acquisition and analysis techniques to create 3D digital images of rock samples, which are used for computational modeling and simulations to predict petrophysical properties of interest. However, the accuracy of the predictions is crucially dependent on the quality of the digital images, which is currently limited by the resolution of the micro-CT scanning technology. We have proposed a novel Deep Learning based Super-Resolution model called Siamese-SR to digitally boost the resolution of Digital Rock images whilst retaining the texture and providing optimal de-noising. The Siamese-SR model consists of a generator which is adversarially trained with a relativistic and a siamese discriminator utilizing Materials In Context (MINC) loss estimator. This model has been demonstrated to improve the resolution of sandstone rock images acquired using micro-CT scanning by a factor of 2. Another key highlight of our work is that for the evaluation of the super-resolution performance, we propose to move away from image-based metrics such as Structural Similarity (SSIM) and Peak Signal to Noise Ratio (PSNR) because they do not correlate well with expert geological and petrophysical evaluations. Instead, we propose to subject the super-resolved images to the next step in the Digital Rock workflow to calculate a crucial petrophysical property of interest, viz. porosity and use it as a metric for evaluation of our proposed Siamese-SR model against several other existing super-resolution methods like SRGAN, ESRGAN, EDSR and SPSR. Furthermore, we also use Local Attribution Maps to show how our proposed Siamese-SR model focuses optimally on edge-semantics, which is what leads to improvement in the image-based porosity prediction, the permeability prediction from Multiple Relaxation Time Lattice Boltzmann Method (MRTLBM) flow simulations as well as the prediction of other petrophysical properties of interest derived from Mercury Injection Capillary Pressure (MICP) simulations.

14.
Polymers (Basel) ; 14(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35406296

ABSTRACT

Large scale simulations of polymer flow through porous media provide an important tool for solving problems in enhanced oil recovery, polymer processing and biological applications. In order to include the effects of a wide range of velocity and density fluctuations, we base our work on a coarse-grain particle-based model consisting of polymers following Brownian dynamics coupled to a background fluid flow through momentum conserving interactions. The polymers are represented as Finitely Extensible Non-Linear Elastic (FENE) dumbbells with interactions including slowly decaying transient forces to properly describe dynamic effects of the eliminated degrees of freedom. Model porous media are constructed from arrays of parallel solid beams with circular or square cross-sections, arranged periodically in the plane perpendicular to their axis. No-slip boundary conditions at the solid-fluid interfaces are imposed through interactions with artificial particles embedded within the solid part of the system. We compare the results of our simulations with those of standard Smoothed Particle Hydrodynamics simulations for Newtonian flow through the same porous media. We observe that in all cases the concentration of polymers at steady state is not uniform even though we start the simulations with a uniform polymer concentration, which is indicative of shear-induced cross-flow migration. Furthermore, we see the characteristic flattening of the velocity profile experimentally observed for shear-thinning polymer solutions flowing through channels as opposed to the parabolic Poiseuille flow profile for Newtonian fluids.

15.
Bioprocess Biosyst Eng ; 45(6): 1019-1031, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35355104

ABSTRACT

Xylitol is a well-known sugar alcohol with exponentially rising market demand due to its diverse industrial applications. Organic agro-industrial residues (OAIR) are economic alternative for the cost-effective production of commodity products along with addressing environmental pollution. The present study aimed to design a process for xylitol production from OAIR via microbial fermentation with Pseudomonas gessardii VXlt-16. Parametric analysis with Taguchi orthogonal array approach resulted in a conversion factor of 0.64 g xylitol/g xylose available in untreated sugarcane bagasse hydrolysate (SBH). At bench scale, the product yield increased to 71.98/100 g (0.66 g/L h). 48.49 g of xylitol crystals of high purity (94.56%) were recovered after detoxification with 2% activated carbon. Cost analysis identified downstream operations as one of the cost-intensive parts that can be countered by adsorbent recycling. Spent carbon, regenerated with acetic acid washing can be reused for six cycles effectively and reduced downstream cost by about ≈32%. The strategy would become useful in the cost-effective production of several biomass-dependent products like proteins, enzymes, organic acids, as well.


Subject(s)
Saccharum , Xylitol , Cellulose/chemistry , Costs and Cost Analysis , Fermentation , Hydrolysis , Pseudomonas , Saccharum/metabolism , Xylose/metabolism
16.
Bioresour Technol ; 351: 127028, 2022 May.
Article in English | MEDLINE | ID: mdl-35318147

ABSTRACT

Excessive generation of wastewater is a matter of concern around the globe. Wastewater treatment utilizing a microalgae-mediated process is considered an eco-friendly and sustainable method of wastewater treatment. However, low biomass productivity, costly harvesting process, and energy extensive cultivation process are the major bottleneck. The use of the microalgal-bacteria granular consortia (MBGC) process is economic and requires less energy. For efficient utilization of MBGC, knowledge of its structure, composition and interaction are important. Various microscopic, molecular and metabolomics techniques play a significant role in understating consortia structure and interaction between partners. Microalgal-bacteria granular consortia structure is affected by various cultivation parameters like pH, temperature, light intensity, salinity, and the presence of other pollutants in wastewater. In this article, a critical evaluation of recent literature was carried out to develop an understanding related to interaction behavior that can help to engineer consortia having efficient nutrient removal capacity with reduced energy consumption.


Subject(s)
Microalgae , Water Purification , Bacteria , Biomass , Wastewater
17.
Sci Total Environ ; 825: 153895, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35182616

ABSTRACT

Worldwide demand for antibiotics and pharmaceutical products is continuously increasing for the control of disease and improvement of human health. Poor management and partial metabolism of these compounds result in the pollution of aquatic systems, leading to hazardous effects on flora, fauna, and ecosystems. In the past decade, the importance of microalgae in micropollutant removal has been widely reported. Microalgal systems are advantageous as their cultivation does not require additional nutrients: they can recover resources from wastewater and degrade antibiotics and pharmaceutical pollutants simultaneously. Bioadsorption, degradation, and accumulation are the main mechanisms involved in pollutant removal by microalgae. Integration of microalgae-mediated pollutant removal with other technologies, such as biodiesel, biochemical, and bioelectricity production, can make this technology more economical and efficient. This article summarizes the current scenario of antibiotic and pharmaceutical removal from wastewater using microalgae-mediated technologies.


Subject(s)
Environmental Pollutants , Microalgae , Anti-Bacterial Agents/metabolism , Biodegradation, Environmental , Biofuels , Biomass , Ecosystem , Environmental Pollutants/metabolism , Humans , Microalgae/metabolism , Pharmaceutical Preparations/metabolism , Wastewater
19.
Chemosphere ; 293: 133564, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35007612

ABSTRACT

Quantum dots (QDs) are getting special attention due to their commendable optical properties and applications. Conventional metal-based QDs have toxicity and non-biodegradability issues, thus it becomes necessary to search for renewable precursor molecules for QDs synthesis. In recent years, biomass-based carbon rich QDs (CQDs) have been introduced which are mainly synthesised via carbonization (pyrolysis and hydrothermal treatment). These CQDs offered higher photostability, biocompatibility, low-toxicity, and easy tunability for physicochemical properties. Exceptional optical properties become a point of attraction for its multifaceted applications in various sectors like fabrication of electrodes and solar cells, conversion of solar energy to electricity, detection of pollutants, designing biosensors, etc. In recent years, a lot of work has been done in this field. This article will summarize these advancements along in a special context to biomass-based QDs and their applications in energy and the environment.


Subject(s)
Quantum Dots , Solar Energy , Biodegradation, Environmental , Biomass , Carbon/chemistry , Quantum Dots/chemistry
20.
Biotechnol Appl Biochem ; 69(4): 1679-1689, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34363245

ABSTRACT

Biomolecular carbon dots (CDs) have immense potential for various industries due to exceptional bioactivity, biocompatibility, low toxicity, and biodegradability. In the present work xylitol (Xlt), a natural sweetener produced by microbial fermentation of sugarcane bagasse (71.98% conversion) has been used for CDs preparation by microwave-assisted carbonization in the presence of ethylene diamine (EDA). The resultant xylitol carbon dots (XCDs) were irregular shaped, rough with an average size of 8.88 nm and exhibiting fluorescence between 400 and 450 nm. The presence of EDA preserves the native chemical structure of Xlt even after exposure to microwaves. Purified XCDs were conjugated (AM-XCD) with ketoconazole and tetracycline for fungi and bacteria, respectively. In comparison to Xlt, XCDs have higher inhibitory potential and reduced dosage size of antimicrobials against Cryptococcus neoformans, Candida albicans, Streptococcus pyogenes, and Escherichia coli by 75%, 75%, 87.50%, and 50%, respectively. For Listeria monocytogenes and Salmonella typhi also inhibitory potential was increased by 14.68% and 21.38%. Increased efficacy advocated the improved drug delivery in the presence of XCDs. However, no inhibitory effect was recorded against DU145 (human prostate cancer) and HCT-15 (human colon adenocarcinoma) cell lines. The findings of the current work suggested the possible use of Xlt as an important antimicrobial agent besides an efficient drug carrier in healthcare.


Subject(s)
Adenocarcinoma , Anti-Infective Agents , Colonic Neoplasms , Saccharum , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Carbon/chemistry , Cellulose/metabolism , Drug Carriers/chemistry , Humans , Saccharum/metabolism , Xylitol/metabolism , Xylitol/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...