Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Food Microbiol ; 113: 104272, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37098424

ABSTRACT

The color of mulberry wine is difficult to maintain since the main chromogenic substances, anthocyanins, are severely degraded during fermentation and aging. This study selected Saccharomyces cerevisiae I34 and Wickerhamomyces anomalus D6, both displaying high hydroxycinnamate decarboxylase (HCDC) activity (78.49% and 78.71%), to enhance the formation of stable vinylphenolic pyranoanthocyanins (VPAs) pigments during mulberry wine fermentation. The HCDC activity of 84 different strains from eight regions in China was primarily screened via the deep well plate micro fermentation method, after which the tolerance and brewing characteristics were evaluated via simulated mulberry juice. The two selected strains and a commercial Saccharomyces cerevisiae were then inoculated individually or sequentially into the fresh mulberry juice, while the anthocyanin precursors and VPAs were identified and quantified via UHPLC-ESI/MS. The results showed that the HCDC-active strains facilitated the synthesis of stable pigments, cyanidin-3-O-glucoside-4-vinylcatechol (VPC3G), and cyanidin-3-O-rutinoside-4-vinylcatechol (VPC3R), highlighting its potential for enhancing color stability.


Subject(s)
Carboxy-Lyases , Morus , Wine , Anthocyanins/metabolism , Wine/analysis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Fermentation , Morus/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism
2.
Food Res Int ; 161: 111867, 2022 11.
Article in English | MEDLINE | ID: mdl-36192987

ABSTRACT

Ampelopsis grossedentata is a traditional medicinal and edible plant rich in bioactive compounds. This paper focus on the white powder on the surface of A. grossedentata, and the effects of processing technology and storage time on the composition of bioactive compounds in Ampelopsis grossedentata extracts (AMP). 33 compounds in AMP were identified and 30 compounds were reported for the first time compared with standards by UHPLC-Q-Orbitrap-MS. Organic acid, phenol, and flavonoids were detected in powder samples. Through comparing the mass spectrum data of three processing samples (traditional method, fermentation and drying-only), five compounds in fermentation samples were higher than other groups, and the content of most compounds of the traditional process was decreased compared with drying-only process. For the storage time research, the powder on the surface was found to be more unstable than leaf parts after 24 h, suggesting that sealing preservation is crucial in the process after powder precipitation.


Subject(s)
Ampelopsis , Flavonoids/pharmacology , Metabolomics , Phenols , Plant Extracts , Powders , Technology
3.
Molecules ; 27(13)2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35807511

ABSTRACT

Mulberry extract has been proven to have the effect of resisting alcohol damage, but its mechanism is still unclear. In this study, the composition of mulberry ethanol extract (MBE) was identified by LC-MS/MS and the main components of MBE were ascertained by measuring. Gastric mucosal epithelial (GES-1) cells were used to elucidate the mechanism of MBE and rutin (the central part of MBE) helped protect against alcohol damage. The results revealed that phenolics accounted for the majority of MBE, accounting for 308.6 mg/g gallic acid equivalents and 108 substances were identified, including 37 flavonoids and 50 non-flavonoids. The treatment of 400 µg/mL MBE and 320 µM rutin reduced early cell apoptosis and the content of intracellular reactive oxygen species, malondialdehyde and increased glutathione. The qPCR results indicated that the MBE inhibits the expression of genes in the mitogen-activated protein kinase (MAPK) pathway, including p38, JNK, ERK and caspase-3; rutin inhibits the expression of p38 and caspase-3. Overall, MBE was able to reduce the oxidative stress of GES-1 cells and regulated apoptosis-related genes of the MAPK pathway. This study provides information for developing anti-ethanol injury drugs or functional foods.


Subject(s)
Morus , Rutin , Apoptosis , Caspase 3/metabolism , Chromatography, Liquid , Ethanol/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Morus/metabolism , Oxidative Stress , Plant Extracts/pharmacology , Reactive Oxygen Species/metabolism , Rutin/pharmacology , Tandem Mass Spectrometry , p38 Mitogen-Activated Protein Kinases/metabolism
4.
J Food Sci ; 85(11): 4050-4060, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33037652

ABSTRACT

Impaired lipid and glucose metabolism in the liver is a crucial characteristic of nonalcoholic fatty liver disease (NAFLD). Coniferaldehyde (CA), a kind of phenolic compound found in many edible plants, has multiple biological and pharmacological functions. However, since the effect and molecular mechanism of CA on hepatic lipid and glucose metabolism disorders in NAFLD remain unknown, this study investigated its impact on the lipid and glucose metabolism of palmitic acid (PA)-induced HepG2 cells. Compared with the HepG2 cells treated only with PA, supplementation with 25, 50, and 100 µM CA reduced the levels of intracellular triglyceride (by 7.11%, 19.62%, and 31.57%) and total cholesterol (by 8.46%, 23.32%, and 27.17%), and enhanced glucose uptake (by 40.91%, 57.49%, and 61.32%) and intracellular glycogen content (by 12.75%, 41.27%, and 53.77%). Moreover, CA supplementation downregulated the expression of sterol regulatory element-binding protein-1, fatty acid synthase, and stearoyl-CoA desaturase 1 related to lipogenesis while upregulating the expression of carnitine palmitoyltransferase 1α related to fatty acid oxidation. CA supplementation also upregulated the glucose transporter 2 protein expression and phosphorylation of glycogen synthase kinase 3ß while downregulating the phosphorylation of glycogen synthase. Most importantly, most of these effects of CA were reversed by pretreatment with AMP-activated protein kinase (AMPK) inhibitor and small interfering RNA-liver kinase B1 (LKB1). In conclusion, CA ameliorated the lipid and glucose metabolism in PA-induced HepG2 cells via the LKB1/AMPK signaling pathway. PRACTICAL APPLICATION: In this study, coniferaldehyde appeared to be effective in ameliorating hepatic lipid and glucose metabolism disorders in nonalcoholic fatty liver disease by reducing the levels of intracellular triglyceride and total cholesterol and enhancing glucose uptake and intracellular glycogen content via the LKB1/AMPK signaling pathway in vitro. Therefore, our findings provide new evidence in support of that supplementation with coniferaldehyde or food rich in coniferaldehyde might be considered as a viable dietary intervention strategy for preventing and treating nonalcoholic fatty liver disease.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Acrolein/analogs & derivatives , Glucose/metabolism , Lipid Metabolism/drug effects , Non-alcoholic Fatty Liver Disease/metabolism , Palmitic Acid/adverse effects , Protein Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases/genetics , Acrolein/pharmacology , Hep G2 Cells , Humans , Lipogenesis/drug effects , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Palmitic Acid/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction/drug effects , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Triglycerides/metabolism
5.
J Food Sci ; 80(4): M800-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25777552

ABSTRACT

As the core microorganism of wine making, Saccharomyces cerevisiae encounter low pH stress at the beginning of fermentation. Effect of initial pH (4.50, 3.00, 2.75, 2.50) on growth and fermentation performance of 3 S. cerevisiae strains Freddo, BH8, Nº.7303, different tolerance at low pH, chosen from 12 strains, was studied. The values of yeast growth (OD600 , colony forming units, cell dry weight), fermentation efficiency (accumulated mass loss, change of total sugar concentration), and fermentation products (ethanol, glycerol, acetic acid, and l-succinic acid) at different pH stress were measured. The results showed that the initial pH of must was a vital factor influencing yeast growth and alcoholic fermentation. Among the 3 strains, strain Freddo and BH8 were more tolerant than Nº.7303, so they were affected slighter than the latter. Among the 4 pH values, all the 3 strains showed adaptation even at pH 2.50; pH 2.75 and 2.50 had more vital effect on yeast growth and fermentation products in contrast with pH 4.50 and 3.00. In general, low initial pH showed the properties of prolonging yeast lag phase, affecting accumulated mass loss, changing the consumption rate of total sugar, increasing final content of acetic acid and glycerol, and decreasing final content of ethanol and l- succinic acid, except some special cases. Based on this study, the effect of low pH on wine products would be better understood and the tolerance mechanism of low pH of S. cerevisiae could be better explored in future.


Subject(s)
Fermentation , Saccharomyces cerevisiae/growth & development , Wine/analysis , Acetic Acid/metabolism , Ethanol/metabolism , Glycerol/metabolism , Humans , Hydrogen-Ion Concentration , Saccharomyces cerevisiae/metabolism , Succinic Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...