Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.491
Filter
1.
Ann Hematol ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012517

ABSTRACT

This study aimed to assess the prognostic value of 18F-fluorodeoxyglucose positron emission tomography/computer tomography (18F-FDG PET/CT) in patients with relapsed multiple myeloma (MM). Fifty-one consecutive patients with relapsed MM were enrolled in this retrospective study. 18F-FDG parameters based on the Italian Myeloma Criteria for PET Use (IMPeTUs) and clinical data were analyzed for overall survival (OS) and progression-free survival (PFS). The Cox proportional risk model was used for univariate and multivariate analysis, and Kaplan-Meier survival curves were used for survival analysis. The median length of follow-up was 20 months (IQR, 5-29 months), the median PFS for the entire cohort was 8 months (IQR, 3-17 months) and the median OS was 21 months (IQR, 8-49 months). Multivariate survival analysis demonstrated that the Deauville score of BM > 3 [HR 2.900, 95% CI (1.011, 8.319), P = 0.048] and the presence of EMD [HR 3.134, 95% CI (1.245, 7.891), P = 0.015] were independent predictors of poor PFS. The presence of EMD [HR 12.777, 95% CI (1.825, 89.461), P = 0.010] and the reduced platelets count [HR 7.948, 95% CI (1.236, 51.099), P = 0.029] were adversely associated with OS. 18F-FDG PET/CT parameters based on IMPeTUs have prognostic significance in patients with relapsed MM.

2.
Small ; : e2402104, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949416

ABSTRACT

To meet increasing requirement for innovative energy storage and conversion technology, it is urgent to prepare effective, affordable, and long-term stable oxygen electrocatalysts to replace precious metal-based counterparts. Herein, a two-step pyrolysis strategy is developed for controlled synthesis of Fe2O3 and Mn3O4 anchored on carbon nanotubes/nanosheets (Fe2O3-Mn3O4-CNTs/NSs). The typical catalyst has a high half-wave potential (E1/2 = 0.87 V) for oxygen reduction reaction (ORR), accompanied with a smaller overpotential (η10 = 290 mV) for oxygen evolution reaction (OER), showing substantial improvement in the ORR and OER performances. As well, density functional theory calculations are performed to illustrate the catalytic mechanism, where the in situ generated Fe2O3 directly correlates to the reduced energy barrier, rather than Mn3O4. The Fe2O3-Mn3O4-CNTs/NSs-based Zn-air battery exhibits a high-power density (153 mW cm-2) and satisfyingly long durability (1650 charge/discharge cycles/550 h). This work provides a new reference for preparation of highly reversible oxygen conversion catalysts.

4.
Article in English | MEDLINE | ID: mdl-39025637

ABSTRACT

BACKGROUND AND PURPOSE: Delayed cerebral ischemia is hard to diagnose early due to gradual, symptomless development. This study aimed to develop an automated model for predicting delayed cerebral ischemia following aneurysmal SAH on NCCT. MATERIALS AND METHODS: This retrospective study included 400 patients with aneurysmal SAH (156 with delayed cerebral ischemia) who underwent NCCT. The study used ATT-Deeplabv3+ for automatically segmenting hemorrhagic regions using semisupervised learning. Principal component analysis was used for reducing the dimensionality of deep learning features extracted from the average pooling layer of ATT-DeepLabv3+. The classification model integrated clinical data, radiomics, and deep learning features to predict delayed cerebral ischemia. Feature selection involved Pearson correlation coefficients, least absolute shrinkage, and selection operator regression. We developed models based on clinical features, clinical-radiomics, and a combination of clinical, radiomics, and deep learning. The study selected logistic regression, Naive Bayes, Adaptive Boosting (AdaBoost), and multilayer perceptron as classifiers. The performance of segmentation and classification models was evaluated on their testing sets using the Dice similarity coefficient for segmentation, and the area under the receiver operating characteristic curve (AUC) and calibration curves for classification. RESULTS: The segmentation process achieved a Dice similarity coefficient of 0.91 and the average time of 0.037 s/image. Seventeen features were selected to calculate the radiomics score. The clinical-radiomics-deep learning model with multilayer perceptron achieved the highest AUC of 0.84 (95% CI, 0.72-0.97), which outperformed the clinical-radiomics model (P = .002) and the clinical features model (P = .001) with multilayer perceptron. The performance of clinical-radiomics-deep learning model using AdaBoost was significantly superior to its clinical-radiomics model (P = .027). The performance of the clinical-radiomics-deep learning model and the clinical-radiomics model with logistic regression notably exceeded that of the model based solely on clinical features (P = .028; P = .046). The AUC of the clinical-radiomics-deep learning model with multilayer perceptron (P < .001) and the clinical-radiomics model with logistic regression (P = .046) were significantly higher than the clinical model with logistic regression. Of all models, the clinical-radiomics-deep learning model with multilayer perceptron showed best calibration. CONCLUSIONS: The proposed 2-stage end-to-end model not only achieves rapid and accurate segmentation but also demonstrates superior diagnostic performance with high AUC values and good calibration in the clinical-radiomics-deep learning model, suggesting its potential to enhance delayed cerebral ischemia detection and treatment strategies.

5.
Small ; : e2402981, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838089

ABSTRACT

To address the imperative challenge of producing hydrogen in a low-energy consumption electrocatalytic system, this study emphasizes the utilization of thermodynamically favorable biomass oxidation for achieving energy-efficient hydrogen generation. This research integrates ultralow PtO2-loaded flower-like nanosheets (denoted as PtO2@Cu2O/Cu FNs) with Cu0/Cu+ pairs and Pt─O bonds, thereby yielding substantial enhancement in both hydrogen evolution reaction (HER, -0.042 VRHE at 10 mA cm-2) and furfural oxidation reaction (FFOR, 0.09 VRHE at 10 mA cm-2). As validated by DFT calculations, the dual built-in electric field (BIEF) is elucidated as the driving force behind the enhanced activities, in which Pt─O bonds expedite the HER, while Cu+/Cu0 promotes low-potential FFOR. By coupling the FFOR and HER together, the resulting bipolar-hydrogen production system requires a low power input (0.5072 kWh per m3) for producing H2. The system can generate bipolar hydrogen and high value-added furoic acid, significantly enhancing hydrogen production efficiency and concurrently mitigating energy consumption.

6.
J Asian Nat Prod Res ; : 1-9, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860546

ABSTRACT

Pegmolesatide, a synthetic, polyethylene-glycolylated, peptide-based erythropoiesis-stimulating agent (ESA), has been recently approved in China. Pegmolesatide is derived from the structure of endogenous erythropoietin (EPO), a natural product in mammals. This study compared the in vitro effects and selectivity of pegmolesatide to those of recombinant EPO and carbamylated EPO (CEPO) through computer-aided analyses and biological tests. The findings indicate that pegmolesatide exhibited the same stimulating effect on erythropoiesis as EPO with fewer side effects than EPO and CEPO.

7.
Talanta ; 278: 126464, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38936106

ABSTRACT

Deoxynivalenol (DON), a mycotoxin produced by Fusarium, poses a significant risk to human health and the environment. Therefore, the development of a highly sensitive and accurate detection method is essential to monitor the pollution situation. In response to this imperative, we have devised an advanced split-type photoelectrochemical (PEC) sensor for DON analysis, which leverages self-shedding MOF-nanocarriers to modulate the photoelectric response ability of PEC substrate. The PEC sensing interface was constructed using CdS/MoSe2 heterostructures, while the self-shedding copper peroxide nanodots@ZIF-8 (CPNs@ZIF-8) served as the Cu2+ source for the in-situ ion exchange reaction, which generated a target-related signal reduction. The constructed PEC sensor exhibited a broad linear range of 0.1 pg mL-1 to 500 ng mL-1 with a low detection limit of 0.038 pg mL-1, demonstrating high stability, selectivity, and proactivity. This work not only introduces innovative ideas for the design of photosensitive materials, but also presents novel sensing strategies for detecting various environmental pollutants.

8.
Redox Biol ; 74: 103225, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38875957

ABSTRACT

Acute kidney injury (AKI) is in high prevalence worldwide but with no therapeutic strategies. Programmed cell death in tubular epithelial cells has been reported to accelerate a variety of AKI, but the major pathways and underlying mechanisms are not defined. Herein, we identified that pyroptosis was responsible for AKI progression and related to ATP depletion in renal tubular cells. We found that FAM3A, a mitochondrial protein that assists ATP synthesis, was decreased and negatively correlated with tubular cell injury and pyroptosis in both mice and patients with AKI. Knockout of FAM3A worsened kidney function decline, increased macrophage and neutrophil cell infiltration, and facilitated tubular cell pyroptosis in ischemia/reperfusion injury model. Conversely, FAM3A overexpression alleviated tubular cell pyroptosis, and inhibited kidney injury in ischemic AKI. Mechanistically, FAM3A promoted PI3K/AKT/NRF2 signaling, thus blocking mitochondrial reactive oxygen species (mt-ROS) accumulation. NLRP3 inflammasome sensed the overload of mt-ROS and then activated Caspase-1, which cleaved GSDMD, pro-IL-1ß, and pro-IL-18 into their mature forms to mediate pyroptosis. Of interest, NRF2 activator alleviated the pro-pyroptotic effects of FAM3A depletion, whereas the deletion of NRF2 blocked the anti-pyroptotic function of FAM3A. Thus, our study provides new mechanisms for AKI progression and demonstrates that FAM3A is a potential therapeutic target for treating AKI.


Subject(s)
Acute Kidney Injury , Kidney Tubules , Pyroptosis , Reactive Oxygen Species , Animals , Humans , Male , Mice , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/genetics , Cytokines , Disease Models, Animal , Inflammasomes/metabolism , Kidney Tubules/metabolism , Kidney Tubules/pathology , Mice, Knockout , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Reactive Oxygen Species/metabolism , Signal Transduction
9.
Biomater Adv ; 162: 213919, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38861801

ABSTRACT

Tumor microenvironment (TME)-responsive chemodynamic therapy (CDT) is severely hindered by insufficient intracellular H2O2 level that seriously deteriorates antitumor efficacy, albeit with its extensively experimental and theoretical research. Herein, we designed atomically dispersed FeCo dual active sites anchored in porous carbon polyhedra (termed FeCo/PCP), followed by loading with glucose oxidase (GOx) and anticancer doxorubicin (DOX), named FeCo/PCP-GOx-DOX, which converted glucose into toxic hydroxyl radicals. The loaded GOx can either decompose glucose to self-supply H2O2 or provide fewer nutrients to feed the tumor cells. The as-prepared nanozyme exhibited the enhanced in vitro cytotoxicity at high glucose by contrast with those at less or even free of glucose, suggesting sufficient accumulation of H2O2 and continual transformation to OH for CDT. Besides, the FeCo/PCP-GOx-DOX can subtly integrate starvation therapy, the FeCo/PCP-initiated CDT, and DOX-inducible chemotherapy (CT), greatly enhancing the therapeutic efficacy than each monotherapy.


Subject(s)
Doxorubicin , Glucose Oxidase , Hydrogen Peroxide , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/chemistry , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/therapeutic use , Glucose Oxidase/metabolism , Glucose Oxidase/chemistry , Humans , Animals , Tumor Microenvironment/drug effects , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Neoplasms/drug therapy , Glucose/metabolism , Catalytic Domain
10.
Front Immunol ; 15: 1281940, 2024.
Article in English | MEDLINE | ID: mdl-38835779

ABSTRACT

Background: The emergence of immunotherapy has changed the treatment modality for melanoma and prolonged the survival of many patients. However, a handful of patients remain unresponsive to immunotherapy and effective tools for early identification of this patient population are still lacking. Researchers have developed machine learning algorithms for predicting immunotherapy response in melanoma, but their predictive accuracy has been inconsistent. Therefore, the present systematic review and meta-analysis was performed to comprehensively evaluate the predictive accuracy of machine learning in melanoma response to immunotherapy. Methods: Relevant studies were searched in PubMed, Web of Sciences, Cochrane Library, and Embase from their inception to July 30, 2022. The risk of bias and applicability of the included studies were assessed using the Prediction Model Risk of Bias Assessment Tool (PROBAST). Meta-analysis was performed on R4.2.0. Results: A total of 36 studies consisting of 30 cohort studies and 6 case-control studies were included. These studies were mainly published between 2019 and 2022 and encompassed 75 models. The outcome measures of this study were progression-free survival (PFS), overall survival (OS), and treatment response. The pooled c-index was 0.728 (95%CI: 0.629-0.828) for PFS in the training set, 0.760 (95%CI: 0.728-0.792) and 0.819 (95%CI: 0.757-0.880) for treatment response in the training and validation sets, respectively, and 0.746 (95%CI: 0.721-0.771) and 0.700 (95%CI: 0.677-0.724) for OS in the training and validation sets, respectively. Conclusion: Machine learning has considerable predictive accuracy in melanoma immunotherapy response and prognosis, especially in the former. However, due to the lack of external validation and the scarcity of certain types of models, further studies are warranted.


Subject(s)
Immunotherapy , Machine Learning , Melanoma , Melanoma/therapy , Melanoma/immunology , Melanoma/mortality , Humans , Immunotherapy/methods , Prognosis , Treatment Outcome
11.
Heliyon ; 10(10): e31092, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38803866

ABSTRACT

This study empirically investigates the crowding effect of Foreign Direct Investment (FDI) on domestic investments in Bangladesh, utilizing annual time series data from 1972 to 2022. Initially, unit root tests are conducted with and without considering structural breaks in the dataset. This study employs the Johansen test of cointegration to investigate the enduring association between the variables and utilizes the Vector Error Correction Model (VECM) to accommodate this relationship over the long term. Following the estimation of the VECM, formulas about the magnitude of the crowding effect (CE) are applied to examine the impact of FDI on domestic investment in Bangladesh. Results indicate that FDI positively influences domestic investments in both the short and long run.

12.
Anal Chem ; 96(21): 8586-8593, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38728058

ABSTRACT

Nowadays, signal enhancement is imperative to increase sensitivity of advanced ECL devices for expediting their promising applications in clinic. In this work, photodynamic-assisted electrochemiluminescence (PDECL) device was constructed for precision diagnosis of Parkinson, where an advanced emitter was prepared by electrostatically linking 2,6-dimethyl-8-(3-carboxyphenyl)4,4'-difluoroboradiazene (BET) with 1-butyl-3-methylimidazole tetrafluoroborate ([BMIm][BF4]). Specifically, protoporphyrin IX (PPIX) can trigger the photodynamic reaction under light irradiation with a wavelength of 450 nm to generate lots of singlet oxygen (1O2), showing a 2.43-fold magnification in the ECL responses. Then, the aptamer (Apt) was assembled on the functional BET-[BMIm] for constructing a "signal off" ECL biosensor. Later on, the PPIX was embedded into the G-quadruplex (G4) of the Apt to magnify the ECL signals for bioanalysis of α-synuclein (α-syn) under light excitation. In the optimized surroundings, the resulting PDECL sensor has a broad linear range of 100.0 aM ∼ 10.0 fM and a low limit of detection (LOD) of 63 aM, coupled by differentiating Parkinson patients from normal individuals according to the receiver operating characteristic (ROC) curve analysis of actual blood samples. Such research holds great promise for synthesis of other advanced luminophores, combined with achieving an early clinical diagnosis.


Subject(s)
Boron Compounds , Electrochemical Techniques , Luminescent Measurements , Parkinson Disease , Humans , Parkinson Disease/diagnosis , Parkinson Disease/blood , Boron Compounds/chemistry , Biosensing Techniques/methods , alpha-Synuclein/analysis , alpha-Synuclein/blood , Protoporphyrins/chemistry , Aptamers, Nucleotide/chemistry , Limit of Detection
13.
PLoS One ; 19(5): e0301220, 2024.
Article in English | MEDLINE | ID: mdl-38758823

ABSTRACT

This study investigates the relationship between Foreign Direct Investment (FDI) inflows and economic growth at sectoral levels in Bangladesh, employing a panel study framework. Utilizing sectoral-level panel data spanning six sectors from 2007-08 to 2018-19, the analysis is conducted using Panel Vector Error Correction Model (Panel VECM). Results from panel unit root tests confirm that all variables are integrated of order one I (1), indicating stationarity. The Pedroni panel co-integration test further supports the presence of co-integration among the variables. Notably, the Panel VECM reveals evidence of a unidirectional causal relationship from Real Gross Domestic Product (RGDP) to Real Foreign Direct Investment (RFDI) across all six sectors of Bangladesh. The findings underscore the significance of formulating pragmatic policies and implementing them effectively to attract FDI across sectors, thereby contributing to the overall economic growth of Bangladesh.


Subject(s)
Economic Development , Investments , Bangladesh , Investments/economics , Humans , Gross Domestic Product , Models, Economic
14.
Angew Chem Int Ed Engl ; : e202407748, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818639

ABSTRACT

Selective producing ethanol from CO2 electroreduction is highly demanded, yet the competing ethylene generation route is commonly more thermodynamically preferred. Herein, we reported an efficient CO2-to-ethanol conversion (53.5 % faradaic efficiency at -0.75 V versus reversible hydrogen electrode (vs. RHE)) over an oxide-derived nanocubic catalyst featured with abundant "embossment-like" structured grain-boundaries. The catalyst also attains a 23.2 % energy efficiency to ethanol within a flow cell reactor. In situ spectroscopy and electrochemical analysis identified that these dualphase Cu(I) and Cu(0) sites stabilized by grain-boundaries are very robust over the operating potential window, which maintains a high concentration of co-adsorbed *CO and hydroxyl (*OH) species. Theoretical calculations revealed that the presence of *OHad not only promote the easier dimerization of *CO to form *OCCO (ΔG~0.20 eV) at low overpotentials but also preferentially favor the key *CHCOH intermediate hydrogenation to *CHCHOH (ethanol pathway) while suppressing its dehydration to *CCH (ethylene pathway), which is believed to determine the remarkable ethanol selectivity. Such imperative intermediates associated with the bifurcation pathway were directly distinguished by isotope labelling in situ infrared spectroscopy. Our work promotes the understanding of bifurcating mechanism of CO2ER-to-hydrocarbons more deeply, providing a feasible strategy for the design of efficient ethanol-targeted catalysts.

15.
BMC Vet Res ; 20(1): 191, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734611

ABSTRACT

BACKGROUND: Many proteins of African swine fever virus (ASFV, such as p72, p54, p30, CD2v, K205R) have been successfully expressed and characterized. However, there are few reports on the DP96R protein of ASFV, which is the virulence protein of ASFV and plays an important role in the process of host infection and invasion of ASFV. RESULTS: Firstly, the prokaryotic expression vector of DP96R gene was constructed, the prokaryotic system was used to induce the expression of DP96R protein, and monoclonal antibody was prepared by immunizing mice. Four monoclonal cells of DP96R protein were obtained by three ELISA screening and two sub-cloning; the titer of ascites antibody was up to 1:500,000, and the monoclonal antibody could specifically recognize DP96R protein. Finally, the subtypes of the four strains of monoclonal antibodies were identified and the minimum epitopes recognized by them were determined. CONCLUSION: Monoclonal antibody against ASFV DP96R protein was successfully prepared and identified, which lays a foundation for further exploration of the structure and function of DP96R protein and ASFV diagnostic technology.


Subject(s)
African Swine Fever Virus , Antibodies, Monoclonal , Epitopes , Mice, Inbred BALB C , Viral Proteins , Animals , Female , Mice , African Swine Fever/immunology , African Swine Fever/virology , African Swine Fever Virus/immunology , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Epitopes/immunology , Swine , Viral Proteins/immunology
16.
Talanta ; 274: 126034, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38604040

ABSTRACT

As an important prognostic indicator in breast cancer, human epithelial growth factor receptor-2 (HER-2) is of importance for assessing prognosis of breast cancer patients, whose accurate and facile analysis are imperative in clinical diagnosis and treatment. Herein, photoactive Z-scheme UiO-66/CdIn2S4 heterojunction was constructed by a hydrothermal method, whose optical property and photoactivity were critically investigated by a range of techniques, combined by elucidating the interfacial charge transfer mechanism. Meanwhile, PtPdCu nanoflowers (NFs) were fabricated by a simple aqueous wet-chemical method, whose peroxidase (POD)-mimicking catalytic activity was scrutinized by representative tetramethylbenzidine (TMB) oxidation in H2O2 system. Taken together, the UiO-66/CdIn2S4 based photoelectrochemical (PEC) aptasensor was established for quantitative analysis of HER-2, where the detection signals were further magnified through catalytic precipitation reaction towards 4-chloro-1-naphthol (4-CN) oxidation (assisted by the PtPdCu NFs nanozyme). The PEC aptasensor presented a broader linear range within 0.1 pg mL-1-0.1 µg mL-1 and a lower limit of detection of 0.07 pg mL-1. This work developed a new PEC aptasensor for ultrasensitive determination of HER-2, holding substantial promise for clinical diagnostics.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Copper , Electrochemical Techniques , Platinum , Receptor, ErbB-2 , Receptor, ErbB-2/analysis , Humans , Electrochemical Techniques/methods , Copper/chemistry , Platinum/chemistry , Biosensing Techniques/methods , Aptamers, Nucleotide/chemistry , Limit of Detection , Biomarkers, Tumor/blood , Biomarkers, Tumor/analysis , Metal-Organic Frameworks/chemistry , Nanostructures/chemistry , Nickel/chemistry , Benzidines/chemistry , Photochemical Processes , Catalysis
17.
Talanta ; 274: 125934, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38574533

ABSTRACT

Nowadays, novel and efficient signal amplification strategy in electrochemiluminescence (ECL) platform is urgently needed to enhance the sensitivity of biosensor. In this work, the dual ECL signal enhancement strategy was constructed by the interactions of Pd nanoparticles attached covalent organic frameworks (Pd NPs@COFs) with tris (bipyridine) ruthenium (RuP) and Exonuclease III (Exo.III) cycle reaction. Within this strategy, the COFs composite was generated from the covalent reaction between 2-nitro-1,4-phenylenediamine (NPD) and trialdehyde phloroglucinol (Tp), and then animated by glutamate (Glu) to attach the Pd NPs. Next, the "signal on" ECL biosensor was constructed by the coordination assembly of thiolation capture DNA (cDNA) onto the Pd NPs@COFs modified electrode. After the aptamer recognition of progesterone (P4) with hairpin DNA 1 (HP1), the Exo. III cycle reaction was initiated with HP2 to generate free DNA, which hybridized with cDNA to form double-stranded DNA (dsDNA). For that, the RuP was embedded into the groove of dsDNA and achieved the ultrasensitive detection of P4 with a lower limit of detection (LOD) down to 0.45 pM, as well as the excellent selectivity and stability. This work expands the COFs-based materials application in ECL signal amplification and valuable DNA cyclic reaction in biochemical testing field.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Exodeoxyribonucleases , Metal Nanoparticles , Metal-Organic Frameworks , Palladium , Progesterone , Metal Nanoparticles/chemistry , Metal-Organic Frameworks/chemistry , Palladium/chemistry , Progesterone/analysis , Progesterone/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/metabolism , Limit of Detection , Luminescent Measurements/methods , Humans , DNA/chemistry
18.
J Colloid Interface Sci ; 665: 1065-1078, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38579389

ABSTRACT

Reactive oxygen species (ROS)-centered chemodynamic therapy (CDT) holds significant potential for tumor-specific treatment. However, insufficient endogenous H2O2 and extra glutathione within tumor microenvironment (TME) severely deteriorate the CDT's effectiveness. Herein, rich-Zn-Co3O4/N-doped porous carbon (Zn-Co3O4/NC) was fabricated by two-step pyrolysis, and applied to build high-efficiency nano-platform for synergistic cancer therapy upon combination with glucose oxidase (GOx), labeled Zn-Co3O4/NC-GOx for clarity. Specifically, the multiple enzyme-like activities of the Zn-Co3O4/NC were scrutinously investigated, including peroxidase-like activity to convert H2O2 to O2∙-, catalase-like activity to decompose H2O2 into O2, and oxidase-like activity to transform O2 to O2∙-, which achieved the CDT through the catalytic cascade reaction. Simultaneously, GOx reacted with intracellular glucose to produce gluconic acid and H2O2, realizing starvation therapy. In the acidic TME, the Zn-Co3O4/NC-GOx rapidly caused intracellular Zn2+ pool overload and disrupted cellular homeostasis for ion-intervention therapy. Additionally, the Zn-Co3O4/NC exhibited glutathione peroxidase-like activity, which consumed glutathione in tumor cells and reduced the ROS consumption for ferroptosis. The tumor treatments offer some constructive insights into the nanozyme-mediated catalytic medicine, coupled by avoiding the TME limitations.


Subject(s)
Cobalt , Hydrogen Peroxide , Neoplasms , Oxides , Humans , Porosity , Reactive Oxygen Species , Glucose Oxidase , Imidazoles , Carbon , Glutathione , Zinc , Neoplasms/drug therapy , Cell Line, Tumor , Tumor Microenvironment
19.
Biosens Bioelectron ; 257: 116324, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38669844

ABSTRACT

Exploring efficient photoactive material presents an intriguing opportunity to enhance the analytical performance of photoelectrochemical (PEC) sensor in the environmental analysis. In this work, a sandwich-structured multi-interface Co9S8@ZnIn2S4/CdSe QDs dual Z-Scheme heterojunction, derived from metal-organic framework (MOF), was synthesized as a sensing platform for chlorpyrifos detection, by integrating with enzyme-induced in situ insoluble precipitates strategy. The meticulously designed Co9S8@ZnIn2S4/CdSe QDs exhibited enhanced charge separation efficiency and was proved to be a highly effective sensing platform for the immobilization of biomolecules, attributing to the intrinsic dual Z-Scheme heterojunction and the distinctive hollow structure. The proposed PEC sensing platform combined with enzyme-induced in situ precipitate signal amplification strategy achieved superior performance for sensing of chlorpyrifos (CPF), showing in wide linear range (1.0 pg mL-1-100 ng mL-1), with a limit of detection (0.6 pg mL-1), excellent selectivity, and stability. This work offers valuable insights for the design of novel advanced photoactive materials aimed at detecting environmental pollutants with low level concentration.


Subject(s)
Biosensing Techniques , Chlorpyrifos , Electrochemical Techniques , Limit of Detection , Metal-Organic Frameworks , Quantum Dots , Chlorpyrifos/analysis , Metal-Organic Frameworks/chemistry , Electrochemical Techniques/methods , Quantum Dots/chemistry , Cadmium Compounds/chemistry , Selenium Compounds/chemistry , Cobalt/chemistry , Insecticides/analysis
20.
Biosens Bioelectron ; 257: 116323, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38669842

ABSTRACT

Metal nanoclusters (MNCs) have outstanding fluorescence property and biocompatibility, which show widespread applications in biological analysis. Particularly, evaluation of enzyme activity with the fluorescent MNCs has been developed rapidly within the past several years. In this review, we first introduced the fluorescent mechanism of mono- and bi-metallic nanoclusters, respectively, whose interesting luminescence properties are mainly resulted from electron transfer between the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels. Meanwhile, the charge migration within the structure occurs through ligand-metal charge transfer (LMCT) or ligand-metal-metal charge transfer (LMMCT). On such foundation, diverse enzyme activities were rigorously evaluated, including three transferases and nine hydrolases, in turn harvesting rapid research progresses within past 5 years. Finally, we summarized the design strategies for evaluating enzyme activity with the MNCs, presented the major issues and challenges remained in the relevant research, coupled by showing some improvement measures. This review will attract researchers dedicated to the studies of the MNCs and provide some constructive insights for their further applications in enzyme analysis.


Subject(s)
Biosensing Techniques , Enzyme Assays , Metal Nanoparticles , Biosensing Techniques/methods , Enzyme Assays/methods , Metal Nanoparticles/chemistry , Humans , Fluorescent Dyes/chemistry , Luminescence , Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...