Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276572

ABSTRACT

Selective supported catalysts have emerged as a promising approach to enhance carrier separation, particularly in the realm of photocatalytic hydrogen production. Herein, a pioneering exploration involves the loading of PdS and Pt catalyst onto g-C3N4 nanosheets to construct g-C3N4@PdS@Pt nanocomposites. The photocatalytic activity of nanocomposites was evaluated under visible light and full spectrum irradiation. The results show that g-C3N4@PdS@Pt nanocomposites exhibit excellent properties. Under visible light irradiation, these nanocomposites exhibit a remarkable production rate of 1289 µmol·g-1·h-1, marking a staggering 60-fold increase compared to g-C3N4@Pt (20.9 µmol·g-1·h-1). Furthermore, when subjected to full spectrum irradiation, the hydrogen production efficiency of g-C3N4@PdS@Pt-3 nanocomposites reaches an impressive 11,438 µmol·g-1·h-1, representing an eightfold enhancement compared to g-C3N4@Pt (1452 µmol·g-1·h-1) under identical conditions. Detailed investigations into the microstructure and optical properties of g-C3N4@PdS catalysts were conducted, shedding light on the mechanisms governing photocatalytic hydrogen production. This study offers valuable insights into the potential of these nanocomposites and their pivotal role in advancing photocatalysis.

2.
Molecules ; 28(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38067575

ABSTRACT

Ultra-thin two-dimensional materials are attracting widespread interest due to their excellent properties, and they are becoming ideal candidates for a variety of energy and environmental photocatalytic applications. Herein, CdS nanorods are successfully grown in situ between a monolayer of g-C3N4 using a chemical water bath method. Continuous ultrasound is introduced during the preparation process, which effectively prevents the accumulation of a g-C3N4 layer. The g-C3N4@CdS nanocomposite exhibits significantly enhanced photocatalytic activity for hydrogen production under visible-light irradiation, which is attributed to a well-matched band structure and an intimate van der Waals heterojunction interface. The mechanism of photocatalytic hydrogen production is discussed in detail. Moreover, our work can serve as a basis for the construction of other highly catalytically active two-dimensional heterostructures.

3.
Nanomaterials (Basel) ; 13(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37110956

ABSTRACT

Photocatalyst performance is often limited by the poor separation and rapid recombination of photoinduced charge carriers. A nanoheterojunction structure can facilitate the separation of charge carrier, increase their lifetime, and induce photocatalytic activity. In this study, CeO2@ZnO nanocomposites were produced by pyrolyzing Ce@Zn metal-organic frameworks prepared from cerium and zinc nitrate precursors. The effects of the Zn:Ce ratio on the microstructure, morphology, and optical properties of the nanocomposites were studied. In addition, the photocatalytic activity of the nanocomposites under light irradiation was assessed using rhodamine B as a model pollutant, and a mechanism for photodegradation was proposed. With the increase in the Zn:Ce ratio, the particle size decreased, and surface area increased. Furthermore, transmission electron microscopy and X-ray photoelectron spectroscopy analyses revealed the formation of a heterojunction interface, which enhanced photocarrier separation. The prepared photocatalysts show a higher photocatalytic activity than CeO2@ZnO nanocomposites previously reported in the literature. The proposed synthetic method is simple and may produce highly active photocatalysts for environmental remediation.

4.
Nanomaterials (Basel) ; 12(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36296854

ABSTRACT

The design and construct pn heterojunction to reduce the recombination rate of photogenerated electron-hole pairs can effectively improve photocatalytic activity. In this study, ZnO/NiO heterojunctions were fabricated by annealing a Zn/Ni metal organic framework precursor synthesized via coprecipitation. The effects of the precursor annealing temperature on the microstructure, morphology, and optical properties of the ZnO/NiO nanocomposites were investigated using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-vis absorption spectroscopy. The results showed that the nanocomposite was composed of hexagonal wurtzite ZnO and cubic NiO, with the former being the dominant phase. Large ZnO nanoparticles were attached to small NiO nanoparticles, and a pn heterojunction interface was formed. The photodegradation performance of the nanomaterials was evaluated by monitoring the degradation of RhB under irradiation by ultraviolet light. The ZnO/NiO nanocomposites exhibited excellent photocatalytic activity when the annealing temperature was 550 °C. The photodegradation mechanism was also analyzed in detail, revealing that the heterojunction between the n-type ZnO and the p-type NiO played an important role in impeding the recombination of photogenerated electron-hole pairs and improving the photocatalytic efficiency.

5.
Nanomaterials (Basel) ; 12(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35407242

ABSTRACT

The degradation of pollutants in wastewater using abundant resources and renewable energy sources, such as light, is attractive from an environmental perspective. ZnO is a well-known photocatalytic material. Therefore, in this study, a hierarchical ZnO microsphere precursor was prepared using a hydrothermal method. The precursor was subsequently annealed at different temperatures, which enabled the production of a ZnO catalyst having a controllable morphology. Specifically, as the annealing temperature increased, the precursor crystallized into hexagonal wurtzite and the crystallinity also increased. The catalysts were tested for their photocatalytic activity for the degradation of dye molecules (methylene blue and rhodamine B), and the catalyst sample annealed at 400 °C showed the best photocatalytic activity. The origin of this activity was studied using electron paramagnetic resonance spectroscopy and transient photocurrent measurements, and the structure of the optimal catalyst was invested using electron microscopy measurements, which revealed that it was formed of two-dimensional nanosheets having smooth surfaces, forming a 2D cellular network. Thus, we have presented a promising photocatalyst for the mineralization of organic contaminants in wastewater.

6.
RSC Adv ; 9(4): 2277-2283, 2019 Jan 14.
Article in English | MEDLINE | ID: mdl-35516105

ABSTRACT

The influence of the headgroup on the dynamics of three different alkylammonium cations confined in graphite oxide (GO) was studied by temperature-dependent impedance spectroscopy. X-ray diffraction, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, thermogravimetry and elemental analysis served to characterize the composites. The alkylammonium cations were connected to the C-O- group of GO via ionic interactions, and the backbone of the confined molecule was distributed as a flat monolayer with the long axis parallel to the GO layer. Ngai's correlated-state model was used, with asymmetry at low temperature in the loss peaks. The calculated true activation energy of 114 meV ± 6% meV is almost the same as the internal rotation barrier of the alkyl macromolecule. We conclude that the relaxation process is definitely attributed to the wobbling around the long molecular axes of the confined ions, an intrinsic motion, not the reorientation of C-H at the headgroup, and it is also due to geometric structural symmetry at the headgroup of the alkylammonium molecules with the interaction of their backbones and the skeletons of GO resulting in the difference in the apparent activation energy.

SELECTION OF CITATIONS
SEARCH DETAIL
...