Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(11)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34200058

ABSTRACT

This study aims to investigate the performance evolution and mechanism of asphalt under action of chloride salt erosion. Asphalt samples soaked with five different snow melting chloride salt concentrations were taken as the research object. Then, the high-temperature performance, low-temperature performance, temperature sensitivity and asphalt-aggregate adhesion property of asphalt samples were carried out. Additionally, Fourier transform infrared spectroscopy (FTIR) was used to explore the mechanism of chloride salt erosion on asphalt. Test results showed the linear variation relationships of high-temperature performance, low-temperature performance and temperature sensitivity with chloride salt concentrations. The high-temperature performance of asphalt would be improved by chloride snowmelt salt. With the increase in the chloride salt solution concentration, the low-temperature performance of asphalt became worse, and the temperature sensitivity increased. Moreover, after the effect of the chloride salt solution, the asphalt-aggregate adhesion property decreased with the increase in the chloride salt solution concentration. It is necessary to control the amount of chloride snowmelt salt in the actual snow removal projects. Finally, based on Fourier transform infrared spectroscopy, the mechanism of chloride salt erosion on asphalt was preliminarily explored. With the increase in the chloride salt solution concentration, the proportion of light components (saturated fraction, aromatic fraction) in asphalt decreased, and the proportion of heavy components (resin and asphaltene) with good thermal stability increased.

2.
Polymers (Basel) ; 13(8)2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33921432

ABSTRACT

The viscoelastic properties of open graded friction course (OGFC) are closely related to anti-permanent deformation ability, noise reduction ability and durability. To study the viscoelastic parameters of OGFC under dynamic and static loads and to establish the functional relationship between them, uniaxial compression creep tests and dynamic modulus tests were performed to obtain the creep compliance and the dynamic modulus of OGFC. In addition, the Burgers model, modified Burgers model, second-order extensive Maxwell model, Scott-Blair model and modified Sigmoid model were employed to quantitatively analyze the dynamic and static viscoelastic properties of OGFC. Subsequently, the relaxation modulus of OGFC was deduced by the viscoelastic theory. Then, the dynamic modulus of OGFC was calculated according to the deduced relaxation modulus. Based on the calculated values and the measured values of dynamic modulus, the functional relationship of viscoelastic parameters of OGFC under dynamic and static loads was established. The results show that the increase in test temperature has adverse effects on the viscoelastic indexes of OGFC, such as creep compliance, relaxation modulus, and dynamic modulus; the dynamic modulus derived from static creep compliance has a good linear correlation with that obtained by dynamic modulus tests, but the correlation of the phase angle is poor.

SELECTION OF CITATIONS
SEARCH DETAIL
...