Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 31(10): 3424-3432, 2020 Oct.
Article in Chinese | MEDLINE | ID: mdl-33314832

ABSTRACT

The aims of this study were to reveal the effects of biochar application combined with nitrogen fertilizer on soil physicochemical properties and crop yield in the typical ancient region of Yellow River, and to clarify the dynamics of carbon and nitrogen content and soil physicochemical properties with different treatments of biochar and nitrogen, which could provide scientific basis for reasonable fertilization of soil, quality improvement of cultivated land, and yield increase of winter wheat. A two-year field experiment was conducted with different biochar applications (0, 15, 30 t·hm-2) combined with different nitrogen levels (N 270, 330 kg·hm-2) to investigate their effects on soil physicochemical property in the typical ancient of Yellow River. After 2-yr biochar application, the generalized soil structure index (GSSI) was increased and three-phase structure distance index of soil (STPSD) was decreased, and three-phase ratio was significantly improved. The most ideal state of three-phase ratio was in the condition of 30 t·hm-2 biochar application. Soil compactness and bulk density was decreased, total porosity and capillary porosity was increased, water holding capacity was improved, water and gas permeability was enhanced, and soil hardening was relieved. The composition of soil aggregate was also changed. Soil aggregate >0.25 mm particle size was increased by 70.6%-94.4%, and mean weight diameter (MWD) was improved by 24.0%-48.0%. Biochar application significantly increased organic carbon content by 15.8%-67.0%, adjusted soil C/N, reduced nitrogen release intensity, improved utilization rate of nitrogen fertili-zer, and enhanced soil fertility. However, it didn't increase soil pH. Soil pH showed a significant downward in 10-20 cm layer. With the same amount of nitrogen application, biochar application significantly increased average yield of winter wheat by 9.6%-25.6% in two years. With the same amount of biochar application, average yield of winter wheat with high nitrogen application was 2.5%-4.4% higher than that with conventional nitrogen application. In summary, combined biochar and nitrogen application could improve soil micro-environment, soil fertility and crop yield. Comprehensively considering soil modification, crop yield improvement and input cost, the optimum amount of fertilization was biochar application (30 t·hm-2) combined with nitrogen fertilizer (330 kg·hm-2).


Subject(s)
Fertilizers , Soil , Agriculture , Charcoal , China , Nitrogen/analysis , Rivers , Triticum
2.
Appl Environ Microbiol ; 83(10)2017 05 15.
Article in English | MEDLINE | ID: mdl-28283519

ABSTRACT

Sphingobium phenoxybenzoativorans SC_3 degrades and utilizes diphenyl ether (DE) or 2-carboxy-DE as its sole carbon and energy source. In this study, we report the degradation of DE and 2-carboxy-DE initiated by a novel ring cleavage angular dioxygenase (diphenyl ether dioxygenase [Dpe]) in the strain. Dpe functions at the angular carbon and its adjacent carbon (C-1a, C-2) of a benzene ring in DE (or the 2-carboxybenzene ring in 2-carboxy-DE) and cleaves the C-1a-C-2 bond (decarboxylation occurs simultaneously for 2-carboxy-DE), yielding 2,4-hexadienal phenyl ester, which is subsequently hydrolyzed to muconic acid semialdehyde and phenol. Dpe is a type IV Rieske non-heme iron oxygenase (RHO) and consists of three components: a hetero-oligomer oxygenase, a [2Fe-2S]-type ferredoxin, and a glutathione reductase (GR)-type reductase. Genetic analyses revealed that dpeA1A2 plays an essential role in the degradation and utilization of DE and 2-carboxy-DE in S. phenoxybenzoativorans SC_3. Enzymatic study showed that transformation of 1 molecule of DE needs two molecules of oxygen and two molecules of NADH, supporting the assumption that the cleavage of DE catalyzed by Dpe is a continuous two-step dioxygenation process: DE is dioxygenated at C-1a and C-2 to form a hemiacetal-like intermediate, which is further deoxygenated, resulting in the cleavage of the C-1a-C-2 bond to form one molecule of 2,4-hexadienal phenyl ester and two molecules of H2O. This study extends our knowledge of the mode and mechanism of ring cleavage of aromatic compounds.IMPORTANCE Benzene ring cleavage, catalyzed by dioxygenase, is the key and speed-limiting step in the aerobic degradation of aromatic compounds. As previously reported, in the ring cleavage of DEs, the benzene ring needs to be first dihydroxylated at a lateral position and subsequently dehydrogenated and opened through extradiol cleavage. This process requires three enzymes (two dioxygenases and one dehydrogenase). In this study, we identified a novel angular dioxygenase (Dpe) in S. phenoxybenzoativorans SC_3. Under Dpe-mediated catalysis, the benzene ring of DE is dioxygenated at the angular position (C-1a, C-2), resulting in the cleavage of the C-1a-C-2 bond to generate a novel product, 2,4-hexadienal phenyl ester. This process needs only one angular dioxygenase, Dpe. Thus, the ring cleavage catalyzed by Dpe represents a novel mechanism of benzene ring cleavage.


Subject(s)
Alphaproteobacteria/metabolism , Bacterial Proteins/metabolism , Dioxygenases/metabolism , Phenyl Ethers/chemistry , Phenyl Ethers/metabolism , Alphaproteobacteria/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biocatalysis , Biodegradation, Environmental , Dioxygenases/chemistry , Dioxygenases/genetics , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...