Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr Cancer ; 74(7): 2644-2656, 2022.
Article in English | MEDLINE | ID: mdl-34907814

ABSTRACT

Targeting Bcr-Abl is the key to the treatment of chronic myeloid leukemia. Despite great progress in the treatment of patients with chronic CML, advanced CML patients are still unable to obtain effective and safe drugs. Momordica cochinchinensis seed is the dried ripe seed of Momordica cochinchinensis, which is a kind of fruit and consumed for dietary as well as medicinal uses. This study aimed to investigate the anticancer activity of Momordica cochinchinensis seed extract (MCSE) in CML cells. CML cells (KBM5 and KBM5-T315I) were treated with MCSE and analyzed for growth, apoptosis, and signal transduction. Nude mouse xenograft model was used to evaluate the antitumor activity of MCSE In Vivo. MCSE significantly reduced the cell viability of CML cells, triggered G0/G1 phase arrest in KBM5 cells and S phase arrest in KBM5-T315I cells. Concurrently, MCSE caused the activation of caspase-3, -8, -9, PARP and the degradation of Mcl-1, ultimately triggering endogenous and exogenous cell apoptosis. Meanwhile, MCSE downregulated Bcr-Abl levels and its downstream signaling pathways. Additionally, MCSE inhibited the growth of CML cells in nude mouse xenografts. Taken together, this study demonstrated the anticancer mechanism of MCSE, namely blocking Bcr-Abl and downregulating Mcl-1, and finally induced apoptosis of CML cells.


Subject(s)
Antineoplastic Agents , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Momordica , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , Fusion Proteins, bcr-abl , Humans , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mice , Momordica/metabolism , Myeloid Cell Leukemia Sequence 1 Protein , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Xenograft Model Antitumor Assays
2.
J Cancer ; 10(23): 5671-5680, 2019.
Article in English | MEDLINE | ID: mdl-31737104

ABSTRACT

Background: Targeting Bcr-Abl is the key for the treatment of CML. Although great progress has been achieved for the treatment of CML patients in chronic stage, effective drugs with good safety are not available for those in advanced stages of CML patients. In present study, a histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), was used to screen for microRNA that can target Bcr-Abl. Methods: RT-qPCR was used to determine Bcr-Abl and miR-4433 transcription level in CML cells. In CML cells, Proteins including PARP, caspase-3, acetyl-histone 3, histone 3 and Bcr-Abl, as well as Bcr-Abl downstream proteins were detected using western blot. Cell viability and apoptosis were monitored respectively by MTS assay and flow cytometry. The correlation between miR-4433 and Bcr-Abl was determined by luciferase reporter assay. The anti-tumor effect of miR-4433 to K562 cells was evaluated by nude mouse xenograft model in vivo. Results: SAHA up-regulated the acetylation level of histone 3, and effectively inhibited Bcr-Abl mRNA level and its downstream signal transduction pathway, while inhibiting the growth of CML cells and inducing apoptosis. Furthermore, bioinformatics tools predicted that miR-4433 is a putative microRNA targeting Bcr-Abl and that the expression level of miR-4433 was significantly increased after SAHA treatment in K562 cells. Luciferase activity analysis revealed that miR-4433 directly targets Bcr-Abl. Additionally, transient expression of miR-4433 abrogated Bcr-Abl activity and its downstream signaling pathways while inducing apoptosis in K562 cells. Moreover, stable expression of miR-4433 suppressed Bcr-Abl and its downstream signaling pathway, and inhibited the growth of K562 cells in vitro and the growth of K562-xenografts in nude mice. Conclusion: miR-4433 was identified as a microRNA targeting Bcr-Abl, which may be subject to epigenetic regulation of SAHA, a histone deacetylase inhibitor that has been approved by the US FDA for the treatment of cutaneous T-cell lymphoma. The findings of this study provide a molecular basis from another angle for the use of SAHA in the treatment of CML.

3.
Oncol Lett ; 17(3): 3017-3025, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30854080

ABSTRACT

Pristimerin is an active compound isolated from the traditional Chinese herbs Celastraceae and Hippocrateaceae. It has been reported to exert antitumor effects under experimental and clinical conditions; however, the antitumor effects and underlying mechanisms of pristimerin in oral cancer cells have not yet been identified. In the present study, the anticancer potential of pristimerin was investigated in two oral squamous cell carcinoma (OSCC) cell lines, CAL-27 and SCC-25. Results demonstrated that pristimerin was toxic against the two cell lines, and exhibited inhibitory effects against proliferation. Furthermore, pristimerin exhibited a more potent anti-proliferative activity in CAL-27 and SCC-25 cells than the common chemotherapy drugs cisplatin and 5-fluorouracil. In addition, cell cycle distribution analysis revealed that G0/G1 phase arrest was induced following pristimerin treatment in CAL-27 and SCC-25 cells, which was strongly associated with upregulation of p21 and p27, coupled with downregulation of cyclin D1 and cyclin E. Meanwhile, pristimerin induced significant apoptosis of CAL-27 and SCC-25 cells, alongside decreased levels of caspase-3 and specific cleavage of poly (ADP-ribose) polymerase. These effects were associated with inhibition of the mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 and protein kinase B signaling pathways. With regards to these results, pristimerin may be considered a potent novel active substance for the treatment of OSCC.

SELECTION OF CITATIONS
SEARCH DETAIL
...