Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(4): e26692, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38434081

ABSTRACT

Development of the multigeneration plants based on the simultaneous production of water and energy can solve many of the current problems of these two major fields. In addition, the integration of fossil power plants with waste heat recovery processes in order to prevent the release of pollutants in the environment can simultaneously cover the environmental and thermodynamic improvements. Besides, the addition of a carbon dioxide (CO2) capturing cycles with such plants is a key issue towards a sustainable environment. Accordingly, a novel waste heat recovery-based multigeneration plant integrated with a carbon dioxide separation/liquefaction cycle is proposed and investigated under multi-variable assessments (energy/exergy, financial, and environmental). The offered multigeneration system is able to generate various beneficial outputs (electricity, liquefied CO2 (L-CO2), natural gas (NG), and freshwater). In the offered system, the liquified natural gas (LNG) cold energy is used to carry out condensation processes, which is a relatively new idea. Based on the results, the outputs rates of net power, NG, L-CO2, and water were determined to be approximately 42.72 MW and 18.01E+03, 612 and 3.56E+03 kmol/h, respectively. Moreover, the multigeneration plant was efficient about 32.08% and 87.72%, respectively, in terms of energy and exergy. Economic estimates indicated that the unit product costs of electricity and liquefied carbon dioxide production, respectively, were around 0.0466 USD per kWh and 0.0728 USD per kg-CO2. Finally, the total released CO2 was about 0.034 kg per kWh. According to a comprehensive comparison, the offered multigeneration plant can provide superior environmental, thermodynamic, and economic performances compared to similar plants. Moreover, there was no need to purchase electricity from the grid.

2.
Heliyon ; 9(7): e17644, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37501997

ABSTRACT

In the advance studies, researchers have performed productive research contributions in the field of nanofluid mechanics under various biological assumptions. These contributions are fruitful to understand the applications of nanofluids in the various fields such as hybrid-powered engine, heart-diagnose, to prevent numerous diseases, heat exchanger, pharmaceutical processes, etc. The current analysis explores the combined effects of heat generation and chemical reaction on the peristaltic flow of viscoplastic nanofluid through a non-uniform (divergent) channel. The physical effects of second-order velocity slip, thermal slip and mass slip parameters on the rheological characteristics are also considered. To describe non-Newtonian effects, the Casson fluid is deployed. The greater wavelength assumption and low Reynolds number theory are used to attain the rheological equations. Numerical solutions of these governing equations associated with suitable boundary conditions are obtained via Mathematica symbolic software. The velocity magnitude of Casson fluid is higher than associated with Newtonian fluid. Radiation parameter has a vigorous impact in the reduction (enhancement) of temperature (mass concentration) profile. The porous parameter has a remarkable impact in reduction of temperature and velocity profile. Thermal enhancement is perceived by intensifying the chemical reaction parameter, and opposite inclination is noticed in mass concentration. Temperature has been demonstrated to be increased by increasing the Darcy number. The magnitudes of both axial velocity and temperature distribution are smaller in the presence of second-order velocity slip parameters effect as compared with no-slip condition. The magnitudes of axial velocity and mass (or, nanoparticle) concentration are augmented by accumulating the Prandtl number. A rise in Brownian parameter is noticed to depress the mass concentration. The present study has been used in bio-mechanical processes, nanomaterial devices, heat transfer enhancement, radiators, and electronics cooling systems.

3.
Water Sci Technol ; 87(12): 3146-3163, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37387436

ABSTRACT

Fuzzy methods using linguistic expressions and fuzzy numbers can provide a more accurate examination of manufacturing systems where data is not clear. Researchers expanded fuzzy control charts (CCs) using fuzzy linguistic statements and investigated the current process efficiency index to evaluate the performance, precision, and accuracy of the production process in a fuzzy state. Compared to nonfuzzy data mode, fuzzy linguistic statements provided decision makers with more options and a more accurate assessment of the quality of products. The fuzzy index of the actual process efficiency analyzed the process by considering mean, target value, and variance of the process simultaneously. Inspection of household water meters in Ha'il, Saudi Arabia showed the actual process index values were less than 1, indicating unfavorable production conditions. Fuzzy methods enhance the accuracy and effectiveness of statistical quality control in real-world systems where precise information may not be readily available. In addition, to provide a new perspective on the comparison of urban water and sewage systems, the results obtained from fuzzy-CC were compared with various machine learning methods such as artificial neural network and M5 model tree, in order to identify and understand their respective advantages and limitations.


Subject(s)
Neural Networks, Computer , Sewage , Saudi Arabia , Quality Control , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...