Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Physiol (1985) ; 132(4): 974-983, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35297691

ABSTRACT

We have developed a portable method to measure sweat rate (SR) under heat stress during field tests. We randomly divided 15 males and 17 females (23-78 yr) into a group, equation group (EG) to determine an equation to convert a unit of SR (mmHg) by the portable method to that (mg·min-1·cm-2) by the ventilation method, and another group, validation group (VG) to validate the equation. Since we repeated measurements twice in three subjects, we randomly assigned the two measurements to one of the two groups and analyzed the results in 18 and 17 subjects for EG and VG, respectively. Subjects cycled for 20 min at moderate intensity in a warm environment while chest SR was simultaneously measured with a capsule installed with 4.8 g of silica gel and two microfans (8.4 cm3 volume) and with another capsule (12.6 cm2 area) ventilated with dry air at 1.5 L·min-1. Since the esophageal temperature (Tes) threshold for increasing SR and the slope of SR at a given increase in Tes by the portable method (x) were in high agreement with those values obtained by the ventilation method (y) in both groups (all r > 0.88, P < 0.001), we determined regression equations for all subjects after pooling data from both groups: y = 1.11x - 3.99 and y = 1.05x + 0.01 when the 95% prediction limits were ±0.12°C and ±0.43 mg·min-1·cm-2·°C-1 with minimum mean differences over the range of 36.2°C-37.2°C and 0.2-2.4 mg·min-1·cm-2·°C-1, respectively, using Bland-Altman analysis. Based on these findings, we consider the portable device to be reliable enough to evaluate individual sweating capacity during field tests.NEW & NOTEWORTHY We developed a portable device to measure sweat rate continuously under heat stress during field tests, with precision similar to that obtained by the ventilation method, which has been used to evaluate individual sweat rate responses in laboratory tests. This new, portable device will provide more opportunities to determine factors influencing sweat rate in larger populations of subjects during field tests.


Subject(s)
Heat Stress Disorders , Sweating , Adult , Aged , Body Temperature/physiology , Exercise/physiology , Female , Heat Stress Disorders/diagnosis , Heat-Shock Response , Hot Temperature , Humans , Male , Middle Aged , Sweat , Young Adult
2.
J Appl Physiol (1985) ; 128(5): 1196-1206, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32240023

ABSTRACT

We examined whether a countdown (CD) before voluntary cycling exercise induced prospective vascular adjustment for the exercise and, if so, whether and how muscle sympathetic nerve activity (MSNA) was involved in the responses. Young men performed voluntary cycling in a semirecumbent position (n = 14) while middle cerebral artery blood flow velocity (VMCA; Doppler ultrasonography), heart rate (HR), arterial pressure (AP; finger photoplethysmography), oxygen consumption rate (V̇o2), oxygen saturation in the thigh muscle (StO2; near-infrared spectrometry), cardiac output (CO; Modelflow method), and total peripheral resistance (TPR) were measured (experiment 1). Another group underwent the same exercise protocol but used only the right leg (n = 10) while MSNA (microneurography) was measured in the peroneal nerve of the left leg (experiment 2). All subjects performed eight trials with a ≥5-min rest between trials. In four trials randomly selected from the eight trials, exercise onset was signaled by a 30-s CD, whereas in the remaining four trials, exercise was started without CD. We found that CD first increased VMCA, HR, CO, and mean AP, and then decreased TPR and increased StO2 and V̇o2 (experiment 1; all P < 0.021). Furthermore, the CD-induced increase in mean AP decreased total MSNA and burst frequency (experiment 2; both P < 0.048) through the baroreflex, with decreased TPR and increased StO2 (experiment 2; both P < 0.001). The vasodilation and increased V̇o2 continued after the start of exercise. Thus CD before starting exercise induced the muscle vasodilatory response with a concomitant reduction in MSNA through the baroreflex to accelerate aerobic energy production after the start of exercise.NEW & NOTEWORTHY Prospective cardiovascular adjustment occurs before starting voluntary exercise, increasing heart rate and arterial pressure followed by muscle vasodilation; however, the precise mechanisms and significance for this vasodilation remain unknown. We found that during the countdown before starting exercise cerebral blood flow velocity increased, followed by increases in heart rate and arterial pressure, which suppressed MSNA through baroreflex, resulting in thigh muscle vasodilation to increase oxygen consumption rate, which might make it easier to start exercise.


Subject(s)
Baroreflex , Vasodilation , Blood Pressure , Heart Rate , Humans , Male , Muscle, Skeletal , Prospective Studies , Sympathetic Nervous System
SELECTION OF CITATIONS
SEARCH DETAIL
...