Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Geochem Health ; 46(7): 230, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849623

ABSTRACT

Soil in urban and industrial areas is one of the main sinks of pollutants. It is well known that there is a strong link between metal(loid)s bioaccessibility by inhalation pathway and human health. The critical size fraction is < 10 µm (inhalable fraction) since these particles can approach to the tracheobronchial region. Here, soil samples (< 10 µm) from a highly urbanized area and an industrialized city were characterized by combining magnetic measurements, bioaccessibility of metal(loids) and Pb isotope analyses. Thermomagnetic analysis indicated that the main magnetic mineral is impure magnetite. In vitro inhalation analysis showed that Cd, Mn, Pb and Zn were the elements with the highest bioaccessibility rates (%) for both settings. Anthropogenic sources that are responsible for Pb accumulation in < 10 µm fraction are traffic emissions for the highly urbanized environment, and Pb related to steel emissions and coal combustion in cement plant for the industrial setting. We did not establish differences in the Pb isotope composition between pseudo-total and bioaccessible Pb. The health risk assessment via the inhalation pathway showed limited non-carcinogenic risks for adults and children. The calculated risks based on pseudo-total and lung bioaccessible concentrations were identical for the two areas of contrasting anthropogenic pressures. Carcinogenic risks were under the threshold levels (CR < 10-4), with Ni being the dominant contributor to risk. This research contributes valuable insights into the lung bioaccessibility of metal(loids) in urban and industrial soils, incorporating advanced analytical techniques and health risk assessments for a comprehensive understanding.


Subject(s)
Lead , Soil Pollutants , Risk Assessment , Humans , Soil Pollutants/analysis , Lead/analysis , Inhalation Exposure/analysis , Environmental Monitoring/methods , Isotopes/analysis , Biological Availability , Particle Size , Industry , Metals, Heavy/analysis , Child , Adult , Urbanization , Soil/chemistry , Cities
2.
Environ Pollut ; 245: 909-920, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30682748

ABSTRACT

The influence of anthropogenic outdoor sources on the geochemical composition of house dust material in large cities is poorly understood. In this study, we investigate the magnetic signature and the concentrations of potentially toxic elements (PTEs) in randomly selected house dust samples from the metropolitan area of Athens, the most populated city in Greece. Environmental magnetic measurements, including isothermal remanent magnetization and thermomagnetism, indicated that the main magnetic mineral is coarse-grained low-coercivity magnetite. Detailed microscopic observations of the magnetically extracted material revealed the presence of three different kinds of Fe-rich particles deriving from both combustion-related and non-exhaust vehicular sources: irregularly-shaped grains and spherules of Fe-oxides, and particles consisting of metallic Fe. Further study of the morphology of single anthropogenic magnetic spherules (size > 30 µm) identified the presence of magnetite spherical particles, typically formed by industrial combustion processes. Enrichment factors (EFs) for the PTEs calculated against the Athens urban soil showed that the house dusts were very highly enriched in Cd, Cu, Zn and significantly enriched in Pb (median EF values of 34.1, 26.2, 25.4 and 10.3, respectively). The oral bioaccessibility of PTEs in the house dust, evaluated using a simulated gastric solution (0.4 M glycine), was in the order Pb > Zn > Mn > Cd > Ni > Cu > Cr > Fe. Concentrations of Pb increased with the house age. Principal component and cluster analysis demonstrated the close association of anthropogenic Cu, Pb and Zn with the magnetic susceptibility of the house dusts. We conclude that both traffic-related and industrial sources trigger the occurrence of magnetic Fe/PTEs- rich particles in house dust. These results reinforce the use of environmental magnetism determinations for assessing anthropogenic contamination of PTEs in the indoor environment in large cities.


Subject(s)
Air Pollution, Indoor/analysis , Dust/analysis , Environmental Monitoring/methods , Magnets/analysis , Metals, Heavy/analysis , Cities , Greece , Particle Size , Random Allocation , Soil/chemistry , Surface Properties
3.
Environ Sci Pollut Res Int ; 24(20): 17041-17055, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28580550

ABSTRACT

The objective of this study was to assess the contamination level of potentially harmful elements (PHEs) in industrial soils and how this relates to environmental magnetism. Moreover, emphasis was given to the determination of the potential mobile fractions of typically "technogenic" metals. Therefore, magnetic and geochemical parameters were determined in topsoils (0-20 cm) collected around a chemical industry in Sindos Industrial Area, Thessaloniki, Greece. Soil samples were presented significantly enriched in "technogenic" metals such Cd, Pb, and Zn, while cases of severe soil contamination were observed in sampling sites north-west of the industrial unit. Contents of Cd, Cr, Cu, Ni, Pb, Mo, Sb, Sn, and Zn in soils and pollution load index (PLI) were highly correlated with mass specific magnetic susceptibility (χ lf). Similarly, enrichment factor (EF) and geoaccumulation index (I geo) for "technogenic" Pb and Zn exhibited high positive correlation factors with χ lf. Principal component analysis (PCA) classified PHEs along with the magnetic variable (χ lf) into a common group indicating anthropogenic influence. The water extractable concentrations were substantially low, while the descending order of UBM (Unified BARGE Method) extractable concentrations in the gastric phase was Zn > Pb > As > Cd, yet Cd showed the highest bioaccessibility (almost 95%).


Subject(s)
Metals, Heavy/analysis , Soil Pollutants , Environmental Monitoring , Greece , Industrial Waste , Magnetics , Metals, Heavy/chemistry , Soil
4.
Environ Sci Pollut Res Int ; 24(3): 2337-2349, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27815849

ABSTRACT

The mineralogy, morphology, and chemical composition of magnetic fractions separated from fly ashes (FAs) originating from Greek lignite-burning power plants was investigated. The oral bioaccessibility of potentially harmful elements (PHEs) from the fly ash magnetic fractions (FAMFs) was also assessed using in vitro gastrointestinal extraction (BARGE Unified Bioaccessibility Method, UBM). The FAMFs isolated were in the range 4.6-18.4%, and their mass specific magnetic susceptibility ranged from 1138 × 10-8 to 1682 × 10-8 m3/kg. XRD analysis and Mossbauer spectroscopy indicated that the dominant iron species were Fe-rich aluminosilicate glass along with magnetite, hematite, and maghemite (in decreasing order). The raw FAs exhibited differences in their chemical composition, indicating the particularity of every lignite basin. The elemental contents of FAMFs presented trends with fly ash type; thus, the FAMFs of high-Ca FAs were enriched in siderophile (Cr, Co, Ni) and lithophile (Cs, Li, Rb) elements and those separated from low-Ca FAs were presented depleted in chalcophile elements. Based on UBM extraction tests, the PHEs were more bioaccessible from the non-magnetic components of the FAs compared to the magnetic ones; however, the bioaccessible fractions estimated for the FAMFs were exceeding 40 % in many cases. Arsenic was found to be significantly bioaccessible (median ~ 80 %) from FAMFs despite the lower As contents in the magnetic fraction.


Subject(s)
Coal Ash , Magnetics , Trace Elements , Aluminum Silicates , Arsenic , Coal , Ferric Compounds , Iron , Power Plants
5.
Sci Total Environ ; 553: 380-391, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26930312

ABSTRACT

Mineralogical and morphological characteristics and heavy metal content of different fractions (bulk, non-magnetic fraction-NMF and magnetic fraction-MF) of road dusts from the city of Thessaloniki (Northern Greece) were investigated. Main emphasis was given on the magnetic phases extracted from these dusts. High magnetic susceptibility values were presented, whereas the MFs content of road dust samples ranged in 2.2-14.7 wt.%. Thermomagnetic analyses indicated that the dominating magnetic carrier in all road dust samples was magnetite, while the presence of hematite and iron sulphides in the investigated samples cannot be excluded. SEM/EDX analyses identified two groups of ferrimagnetic particles: spherules with various surface morphologies and textures and angular/aggregate particles with elevated heavy metal contents, especially Cr. The road dusts (bulk samples) were dominated by calcium, while the mean concentrations of trace elements decreased in the order Zn > Mn > Cu > Pb > Cr > Ni > V > Sn > As > Sb > Co > Mo > W > Cd. MFs exhibited significantly higher concentrations of trace elements compared to NMFs indicating that these potentially harmful elements (PHEs) are preferentially enriched in the MFs and highly associated with the ferrimagnetic particles. Hazard Index (HI) obtained for both adults and children through exposure to bulk dust samples were lower or close to the safe level (=1). On the contrary, the HIs for the magnetic phases indicated that both children and adults are experiencing potential health risk since HI for Cr was significantly higher than safe level. Cancer risk due to road dust exposure is low.


Subject(s)
Dust/analysis , Environmental Exposure/statistics & numerical data , Magnetics , Cities , Environmental Exposure/analysis , Greece , Humans , Metals, Heavy/analysis , Risk Assessment , Trace Elements/analysis , Transportation
SELECTION OF CITATIONS
SEARCH DETAIL
...