Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bioelectromagnetics ; 32(4): 283-90, 2011 May.
Article in English | MEDLINE | ID: mdl-21452358

ABSTRACT

Electromagnetic fields (EMF) have been shown to exert beneficial effects on cartilage tissue. Nowadays, differentiated human mesenchymal stem cells (hMSCs) are discussed as an alternative approach for cartilage repair. Therefore, the aim of this study was to examine the impact of EMF on hMSCs during chondrogenic differentiation. HMSCs at cell passages five and six were differentiated in pellet cultures in vitro under the addition of human fibroblast growth factor 2 (FGF-2) and human transforming growth factor-ß(3) (TGF-ß(3) ). Cultures were exposed to homogeneous sinusoidal extremely low-frequency magnetic fields (5 mT) produced by a solenoid or were kept in a control system. After 3 weeks of culture, chondrogenesis was assessed by toluidine blue and safranin-O staining, immunohistochemistry, quantitative real-time polymerase chain reaction (PCR) for cartilage-specific proteins, and a DMMB dye-binding assay for glycosaminoglycans. Under EMF, hMSCs showed a significant increase in collagen type II expression at passage 6. Aggrecan and SOX9 expression did not change significantly after EMF exposure. Collagen type X expression decreased under electromagnetic stimulation. Pellet cultures at passage 5 that had been treated with EMF provided a higher glycosaminoglycan (GAG)/DNA content than cultures that had not been exposed to EMF. Chondrogenic differentiation of hMSCs may be improved by EMF regarding collagen type II expression and GAG content of cultures. EMF might be a way to stimulate and maintain chondrogenesis of hMSCs and, therefore, provide a new step in regenerative medicine regarding tissue engineering of cartilage.


Subject(s)
Cell Differentiation/radiation effects , Chondrogenesis/radiation effects , Electromagnetic Fields , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/radiation effects , Adult , DNA/metabolism , Glycosaminoglycans/metabolism , Humans , Immunohistochemistry , Mesenchymal Stem Cells/metabolism , Polymerase Chain Reaction , Tissue Engineering
2.
Biomaterials ; 30(12): 2385-92, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19185914

ABSTRACT

Growth factors like BMP2 have been tested for osteochondral repair, but transfer methods used until now were insufficient. Therefore, the aim of this study was to analyse if stable BMP2 expression after retroviral vector (Bullet) transduction is able to regenerate osteochondral defects in rabbits. Fibrin clots colonized by control or BMP2-transduced chondrocytes were generated for in vitro experiments and implantation into standardized corresponding osteochondral defects (n=32) in the rabbit trochlea. After 4 and 12 weeks repair tissue was analysed by histology (HE, alcian-blue, toluidine-blue), immunohistochemistry (Col1, Col2, aggrecan, aggrecan-link protein), ELISA (BMP2), and quantitative RT-PCR (BMP2, Col1, Col2, Col10, Cbfa1, Sox9). In vitro clots were also analysed by BMP2-ELISA, histology (alcian-blue), quantitative RT-PCR and in addition by electron microscopy. BMP2 increased Col2 expression, proteoglycan production and cell size in vitro. BMP2 transduction by Bullet was efficient and gene expression was stable in vivo over at least 12 weeks. Proteoglycan content and ICRS-score of repair tissue were improved by BMP2 after 4 and 12 weeks and Col2 expression after 4 weeks compared to controls. However, in spite of stable BMP2 expression, a complete repair of osteochondral defects could not be demonstrated. Therefore, BMP2 is not suitable to regenerate osteochondral lesions completely.


Subject(s)
Bone Morphogenetic Protein 2/metabolism , Bone and Bones/cytology , Chondrocytes/metabolism , Fibrin/metabolism , Regeneration/physiology , Alkaline Phosphatase/metabolism , Animals , Bone Morphogenetic Protein 2/genetics , Cells, Cultured , Disease Models, Animal , Female , Gene Expression , Gene Expression Regulation , Prostheses and Implants , Rabbits
3.
J Biomed Nanotechnol ; 5(6): 692-706, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20201231

ABSTRACT

The magnetic labeling of living cells has become of major interest in the areas of cell therapy and tissue engineering. Magnetically labeled cells have been reported to allow increased and controlled seeding, tracking, and targeting of cells. In this work, we comprehensively characterize magnetic nanoparticles (MNPs) possessing a magnetite core of about 11 nm, and which are coated with the fluorinated surfactant F(CF2)nCH2CH2SCH2CH2C(O)OLi and 1,9-nonandithiol (NDT) for the nonspecific labeling of human pulmonary epithelial (H441) cells. We achieved a non-specific cell loading of 38 pg Fe/cell. In this work we combine magnetic cell labeling with subsequent genetic modification of the cells with non-viral transfection complexes associated with PEI-Mag2 magnetic nanoparticles upon gradient magnetic field application called magnetofection. The magnetic responsiveness and magnetic moment of the MNP-labeled cells and the magnetic transfection complexes were evaluated by measuring changes in the turbidity of prepared cells suspensions and complexes in a defined magnetic gradient field. The magnetic responsiveness of cells that were loaded with NDT-Mag1 MNPs (20-38 pg Fe/cell) was sufficient to engraft these labeled cells magnetically onto the luminal surface of a culture tube. This was achieved using a solenoid electromagnet that produced a radial magnetic field of 20-30 mT at the seeding area and an axial gradient field of approx. 4 T/m. The MNP-labeled cells were magnetofected in 2D arrays (well plates) and at the luminal surface of cell culture tube. The optimized magnetic pre-labeling of cells did not interfere with, or even increased, the efficiency of magnetofection in both culture systems without causing cell toxicity. Cell loading of 38 pg Fe/cell of NDT-Mag1 MNPs resulted in high transverse relaxivities r2*, thus allowing the MRI detection of cell concentrations that were equivalent to (or higher than) 1.2 microg Fe/ml. Multi-echo gradient echo imaging and R2* mapping detected as few as 1533 MNP-labeled H441 cells localized within a 50 microl fibrin clot and MNP-labeled cell monolayers that were engrafted on the luminal surface of a cell culture tube. Further loading of cells with MNPs did not increase either the magnetic responsiveness of the cells or the sensitivity of MR imaging. In summary, the NDT-Mag1 magnetic nanoparticles provided a high cell-loading efficiency, resulting in strong cell magnetic moments and a high sensitivity to MRI detection. The transfection ability of the labeled cells was also maintained, thereby increasing the magnetofection efficiency.


Subject(s)
Cell Culture Techniques/methods , DNA/administration & dosage , DNA/chemistry , Epithelial Cells/cytology , Epithelial Cells/physiology , Magnetic Resonance Imaging/methods , Magnetics , Transfection/methods , Cell Line , Epithelial Cells/chemistry , Humans , Staining and Labeling/methods
4.
Pharm Res ; 25(12): 2946-62, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18781379

ABSTRACT

PURPOSE: Gene delivery from biomaterials has become an important tool in tissue engineering. The purpose of this study was to generate a gene vector-doted fibrin glue as a versatile injectable implant to be used in gene therapy supported tissue regeneration. METHODS: Copolymer-protected polyethylenimine(PEI)-DNA vectors (COPROGs), naked DNA and PEI-DNA were formulated with the fibrinogen component of the fibrin glue TISSUCOL and lyophilized. Clotting parameters upon rehydration and thrombin addition were measured, vector release from fibrin clots was determined. Structural characterizations were carried out by electron microscopy. Reporter and growth factor gene delivery to primary keratinocytes and chondrocytes in vitro was examined. Finally,chondrocyte colonized clots were tested for their potency in cartilage regeneration in a osteochondral defect model. RESULTS: The optimized glue is based on the fibrinogen component of TISSUCOL, a fibrin glue widely used in the clinics, co-lyophilized with copolymer-protected polyethylenimine(PEI)- DNA vectors (COPROGs). This material, when rehydrated, forms vector-containing clots in situ upon thrombin addition and is suitable to mediate growth factor gene delivery to primary keratinocytes and primary chondrocytes admixed before clotting. Unprotected PEI-DNA in the same setup was comparatively unsuitable for clot formation while naked DNA was ineffective in transfection. Naked DNA was released rapidly from fibrin clots (>70% within the first seven days) in contrast to COPROGs which remained tightly immobilized over extended periods of time (0.29% release per day). Electron microscopy of chondrocytecolonized COPROG-clots revealed avid endocytotic vector uptake. In situ BMP-2 gene transfection and subsequent expression in chondrocytes grown in COPROG clots resulted in the upregulation of alkaline phosphatase expression and increased extracellular matrix formation in vitro. COPROG-fibrinogen preparations with admixed autologous chondrocytes when clotted in situ in osteochondral defects in the patellar grooves of rabbit femura gave rise to luciferase reporter gene expression detectable for two weeks (n=3 animals per group). However, no significant improvement in cartilage formation in osteochondral defects filled with autologous chondrocytes in BMP-2-COPROG clots was achieved in comparison to controls (n=8 animals per group). CONCLUSIONS: COPROGs co-lyophilized with fibrinogen are a simple basis for an injectable fibrin gluebased gene-activated matrix. The preparation can be used is complete analogy to fibrin glue preparations that are used in the clinics. However, further improvements in transgene expression levels and persistence are required to yield cartilage regeneration in the osteochondral defect model chosen in this study.


Subject(s)
DNA/administration & dosage , Fibrin Tissue Adhesive/administration & dosage , Gene Transfer Techniques , Genetic Therapy/methods , Genetic Vectors , Animals , Bone Morphogenetic Protein 2/genetics , Cell Survival , Cells, Cultured , Chondrocytes/metabolism , Drug Carriers , Female , Fibrin Tissue Adhesive/chemistry , Humans , Keratinocytes/metabolism , Microscopy, Electron , Microscopy, Fluorescence , Rabbits , Reverse Transcriptase Polymerase Chain Reaction , Tissue Engineering
5.
Cells Tissues Organs ; 183(3): 156-65, 2006.
Article in English | MEDLINE | ID: mdl-17108686

ABSTRACT

Optimizing seeding efficiency, reducing delayed culture periods and mimicking native tissue architecture are crucial requirements for the development of seeding procedures in tissue engineering. In vascular applications, the tubular geometry of the grafts further hampers the efficient delivery of cells onto the scaffold. To overcome these limitations, a novel technology based upon the use of magnetic fields is presented in this study: a radial magnetic force drives the cells immediately onto the luminal surface of a tubular scaffold and immobilizes the cells on the substrate's surface promoting cell attachment. Human smooth muscle cells (SMCs) labeled with CD44 magnetic Dynabeads were successively seeded onto the luminal surface of a tubular shaped collagen membrane. After 5 h, one additional layer of human umbilical vein endothelial cells (HUVECs) labeled with CD31 magnetic Dynabeads was seeded onto the luminal SMCs. The co-culture was incubated during 5 days prior to analysis. Cell viability and expression profiles were preserved during the entire seeding process. Histological examination of the constructs highlighted densely packed multilayers of SMCs covered by a monolayer of endothelial cells. SEM inspection confirmed a heterotypic multilayer assembly formed by multiple layers of elongated SMCs covered by a single layer of endothelial cells. Seeding kinetics of HUVECs and SMCs showed over 90% seeding efficiency after 20 and 40 min magnetic exposure respectively. Magnetically induced cell seeding provides a valuable tool for rapid seeding procedures of tubular scaffolds while complying with the histological architecture of tissue.


Subject(s)
Blood Vessels/cytology , Endothelium, Vascular/cytology , Magnetics , Muscle, Smooth/cytology , Tissue Engineering/methods , Animals , Biocompatible Materials/chemistry , Blood Vessels/ultrastructure , Cells, Cultured , Coculture Techniques , Collagen/chemistry , Collagen/ultrastructure , Endothelium, Vascular/ultrastructure , Horses , Humans , Immunohistochemistry , Membranes, Artificial , Models, Biological , Muscle, Smooth/ultrastructure , Umbilical Veins/cytology
6.
J Reconstr Microsurg ; 20(7): 555-64, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15534783

ABSTRACT

In reconstructive surgery, the integration of tissue-engineered cartilage in a prefabricated free flap may make it possible to generate flaps combining a variety of tissue components, to meet the special requirements of particular defects. One aim of the present study was to investigate prefabrication of a microvascular free flap by implanting a vessel loop under a skin flap in a rabbit model. A second aim was to report on the authors' preliminary experiences in prelaminating prefabricated flaps with autologous tissue-engineered cartilage, in terms of matrix development, inflammatory reaction, and host-tissue interaction. The flap was prefabricated by implanting a vessel loop under a random-pattern abdominal skin flap. The tissue-engineered cartilage constructs were made by isolating chondrocytes from auricular biopsies. Following a period of amplification, the cells were seeded onto a non-woven scaffold made of a hyaluronic-acid derivative and cultivated for 2 weeks. One cell-biomaterial construct was placed beneath the prefabicated flap, and two additional constructs were placed subcutaneously and intramuscularly. In addition, a biomaterial sample without cells was placed subcutaneously to provide a control. All implanted specimens were left in position for 6 or 12 weeks. Neovascularization in the prefabricated flap and biomaterial construct was analyzed by angiography. After explantation, the specimens were examined by histologic and immunohistochemical methods. The prefabricated flaps showed a well-developed network of blood vessels between the implanted vessel loop and the original random-pattern blood supply. The tissue-engineered constructs remained stable in size and showed signs of tissue similar to hyaline cartilage, as evidenced by the expression of cartilage-specific collagen type II and proteoglycans. No inflammatory reactions were observed. The physiologic environment of the autologous rabbit model provided favorable conditions for matrix deposition and maturation of the cell-biomaterial constructs. These initial results demonstrated the potential of prefabricating an axial perfused flap, combined with tissue-engineered cartilage, thus creating functionally competent tissue components for reconstructive surgery with minimal donor-site morbidity.


Subject(s)
Cartilage/growth & development , Cartilage/transplantation , Surgical Flaps/blood supply , Tissue Engineering/methods , Angiography , Animals , Cell Culture Techniques , Chondrocytes/cytology , Collagen Type II/metabolism , Models, Animal , Proteoglycans/metabolism , Rabbits
7.
Tissue Eng ; 10(11-12): 1695-706, 2004.
Article in English | MEDLINE | ID: mdl-15684678

ABSTRACT

In the field of tissue engineering, techniques have been described to generate cartilage tissue with isolated chondrocytes and bioresorbable or nonbioresorbable biomaterials serving as three-dimensional cell carriers. In spite of successful cartilage engineering, problems of uneven degradation of biomaterial, and unforeseeable cell-biomaterial interactions remain. This study represents a novel technique to engineer cartilage by an in vitro macroaggregate culture system without the use of biomaterials. Human nasoseptal or auricular chondrocytes were enzymatically isolated and amplified in conventional monolayer culture before the cells were seeded into a cell culture insert with a track-etched membrane and cultured in vitro for 3 weeks. The new cartilage formed within the in vitro macroaggregates was analyzed by histology (toluidine blue, von Kossa-safranin O staining), and immunohistochemistry (collagen types I, II, V, VI, and X and elastin). The total glycosaminoglycan (GAG) content of native and engineered auricular as well as nasal cartilage was assayed colorimetrically in a safranin O assay. The biomechanical properties of engineered cartilage were determined by biphasic indentation assay. After 3 weeks of in vitro culture, nasoseptal and auricular chondrocytes synthesized new cartilage with the typical appearance of hyaline nasal cartilage and elastic auricular cartilage. Immunohistochemical staining of cartilage samples showed a characteristic pattern of staining for collagen antibodies that varied in location and intensity. In all samples, intense staining for cartilage-specific collagen types I, II, and X was observed. By the use of von Kossa-safranin O staining a few positive patches-a possible sign of beginning mineralization within the engineered cartilages-were detected. The unique pattern for nasoseptal cartilage is intense staining for type V collagen, whereas auricular cartilage is only weakly positive for collagen types V and VI. Engineered nasal and auricular macroaggregates were negative for anti-elastin antibody (interterritorially). The measurement of total GAG content demonstrated higher GAG content for reformed nasoseptal cartilage compared with elastic auricular cartilage. However, the total GAG content of engineered macroaggregates was lower than that of native cartilage. In spite of the mechanical stability of the auricular macroaggregates, there was no equilibrium of indentation. The histomorphological and immunohistochemical results demonstrate successful cartilage engineering without the use of biomaterials, and identify characteristics unique to hyaline as well as elastic cartilage. The GAG content of engineered cartilage was lower than in native cartilage and the biomechanical properties were not determinable by indentation assay. This study illustrates a novel in vitro macroaggregate culture system as a promising technique for tissue engineering of cartilage grafts. Further long-term in vitro and in vivo studies must be done before this method can be applied to reconstructive surgery of the nose or auricle.


Subject(s)
Cartilage, Articular/cytology , Cartilage, Articular/growth & development , Cell Culture Techniques/methods , Chondrocytes/cytology , Chondrocytes/physiology , Tissue Engineering/methods , Transplants , Cell Aggregation/physiology , Cell Differentiation/physiology , Cell Proliferation , Cells, Cultured , Glycosaminoglycans/metabolism , Humans
8.
Biomaterials ; 23(6): 1511-7, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11833491

ABSTRACT

For tissue engineering of cartilage, chondrocytes can be seeded in a scaffold and stimulated to produce a cartilage-like matrix. In the present study, we investigated the effect of alginate as a chondrocyte-delivery substance for the construction of cartilage grafts. E210 (a non-woven fleece of polyglactin) was used as a scaffold. When bare' E210 (without alginate and without chondrocytes) was implanted subcutaneously in nude mice for 8 weeks. the explanted tissue consisted of fat and fibrous tissue only. When E210 with alginate but without chondrocytes was implanted in nude mice, small areas of newly formed cartilage were found. Alginate seems to stimulate chondrogenesis of ingrowing cells. When chondrocytes were seeded in E210, large amounts of cartilage were found, independent of the use of alginate. This was expressed by a high concentration of glycosaminoglycans (30 microg/mg w.w.) and the presence of collagen type II (1.5 microg/mg w.w.). Macroscopically the grafts of E210 without alginate were shrunk and warped, whereas the grafts with alginate had kept their original shape during the 8 weeks of implantation. The use of alginate did not lead to inflammatory reactions nor increased capsule formation. In conclusion, the use of alginate to seed chondrocytes in E210 does not influence the amount of cartilage matrix proteins produced per tissue wet weight. However, it provides retention of the graft shape.


Subject(s)
Alginates/pharmacology , Cartilage/metabolism , Chondrocytes/metabolism , Collagen Type II/chemistry , Glycosaminoglycans/chemistry , Animals , Biocompatible Materials , Cattle , Humans , Inflammation , Mice , Mice, Nude , Time Factors , Tissue Engineering
9.
Biomaterials ; 23(6): 1425-38, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11829438

ABSTRACT

In this study we have used lectin histochemistry and scanning electron microscopy (SEM) to assess the growth and characterise the differentiation of human respiratory epithelial cells (REC) cultured on two biomaterial scaffolds. The first scaffold, based on a hyaluronic acid derivative, was observed to be non-adhesive for REC. This lack of adhesion was found to be unrelated to the presence of the hyaluronic acid binding domain on the surface of isolated REC. The other scaffold, consisting of equine collagen. was observed to encourage REC spreading and adhesion. Positive Ulex Europaeus agglutinin (UEA) lectin staining of this preparation indicated the presence of ciliated REC on the scaffold surface. However, the marked decrease in peanut agglutinin (PNA) positive staining, relative to that of control cultures and native tissue, indicates a dedifferentiation of the secretory cells of the REC monolayer. SEM analysis of REC cultured on the collagen scaffold confirmed the presence of ciliated cells thereby validating the UEA positive staining. The presence of both established and developing cilia was also verified. This study indicates that collagen biomaterials are appropriate for the tissue engineering of REC. Furthermore, that UEA and PNA staining is a useful tool in the characterisation of cells cultured on biomaterials, therefore helpful in identifying biomaterials that are suitable for specific tissue engineering purposes.


Subject(s)
Biocompatible Materials/chemistry , Epithelial Cells/chemistry , Trachea/pathology , Adult , Cells, Cultured , Humans , Hyaluronic Acid/chemistry , Lectins/metabolism , Microscopy, Electron , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Microscopy, Phase-Contrast , Middle Aged , Protein Binding , Protein Structure, Tertiary , Trachea/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...