Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 95(6): 066801, 2005 Aug 05.
Article in English | MEDLINE | ID: mdl-16090971

ABSTRACT

We have observed the Fano-Kondo antiresonance in a quantum wire with a side-coupled quantum dot. In a weak coupling regime, dips due to the Fano effect appeared. As the coupling strength increased, conductance in the regions between the dips decreased alternately. From the temperature dependence and the response to the magnetic field, we conclude that the conductance reduction is due to the Fano-Kondo antiresonance. At a Kondo valley with the Fano parameter q approximately 0, the phase shift is locked to pi/2 against the gate voltage when the system is close to the unitary limit in agreement with theoretical predictions by Gerland et al. [Phys. Rev. Lett. 84, 3710 (2000)].

2.
Phys Rev Lett ; 92(17): 176802, 2004 Apr 30.
Article in English | MEDLINE | ID: mdl-15169178

ABSTRACT

We report experiments on the interference through spin states of electrons in a quantum dot (QD) embedded in an Aharonov-Bohm (AB) interferometer. We have picked up a spin-pair state, for which the environmental conditions are ideally similar. The AB amplitude is traced in a range of gate voltage that covers the pair. The behavior of the asymmetry in the amplitude around the two Coulomb peaks agrees with the theoretical prediction that the spin-flip process in a QD is related to the quantum dephasing of electrons. These results constitute evidence of "partial coherence" due to an entanglement of spins in the QD and in the interferometer.

3.
Phys Rev Lett ; 88(25 Pt 1): 256806, 2002 Jun 24.
Article in English | MEDLINE | ID: mdl-12097115

ABSTRACT

The Fano effect, which arises from an interference between a localized state and the continuum, reveals a fundamental aspect of quantum mechanics. We have realized a tunable Fano system in a quantum dot (QD) in an Aharonov-Bohm interferometer, which is the first convincing demonstration of this effect in mesoscopic systems. With the aid of the continuum, the localized state inside the QD acquires itinerancy over the system even in the Coulomb blockade. Through tuning of the parameters, which is an advantage of the present system, unique properties of the Fano effect on the phase and coherence of electrons have been revealed.

SELECTION OF CITATIONS
SEARCH DETAIL
...