Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chembiochem ; 17(15): 1403-6, 2016 08 03.
Article in English | MEDLINE | ID: mdl-27168414

ABSTRACT

Synthetic minimal membrane systems are extremely useful for better understanding of complex cellular structures and cell surface processes. We have developed a facile method for synthesis of cholesterylated peptides, each bearing a carbohydrate moiety and a fluorescent tag. The position of the cholesterol moiety on the peptide can be controlled by using a new Fmoc-protected cholesterol-triazole-lysine group, which we constructed by means of solid-phase peptide synthesis. We succeeded in integrating the glyco modules into giant unilamellar vesicles by electroformation or infusion in buffer solution. The glyco-decorated liposomes were recognized by a lectin and had unique topological membrane features. In conclusion, this work is a proof of principle for the functionalization of artificial membranes with a primitive synthetic glycocalyx useful for studying carbohydrate-protein interactions on a simplified cell-like membrane surface.


Subject(s)
Cholesterol/chemistry , Glycocalyx/chemistry , Glycopeptides/chemical synthesis , Membranes, Artificial , Glycopeptides/chemistry , Glycosylation , Lectins/metabolism , Solid-Phase Synthesis Techniques/methods , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/metabolism
2.
Bioorg Med Chem ; 19(13): 4114-26, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21622002

ABSTRACT

Proteoglycans (PG) are polyanionic proteins consisting of a core protein substituted with carbohydrate chains, that is, glycosaminoglycans (GAG). The biosynthesis of GAG can be manipulated by simple xylosides carrying hydrophobic aglycons, which can enter the cell and initiate the biosynthesis. While the importance of the aglycon is well investigated, there is far less information on the effect of modifications in the xylose residue. We have developed a new synthetic protocol, based on acetal protection and selective benzylation, for modification of the three hydroxyl groups in xylose. Thus we have synthesized twelve analogs of 2-naphthyl ß-d-xylopyranoside (XylNap), where each hydroxyl group has been epimerized or replaced by methoxy, fluoro, or hydrogen. To gain more information about the properties of xylose, conformational studies were made on some of the analogs. It was found that the (4)C(1) conformation is highly predominant, accompanied by a nonnegligible population of the (2)S(0) conformation. However, deoxygenation at C3 results in a large portion of the (1)C(4) conformation. The GAG priming ability and proliferation activity of the twelve analogs, were investigated using a matched pair of human breast fibroblasts and human breast carcinoma cells. None of the analogs initiated the biosynthesis of GAG, but an inhibitory effect on endogenous PG production was observed for analogs fluorinated or deoxygenated at C4. From our data it seems reasonable that all three hydroxyl groups in XylNap are essential for the priming of GAG chains and for selective toxicity for tumor cells.


Subject(s)
Glycosides/chemistry , Cell Line , Glycosaminoglycans/biosynthesis , Glycosides/chemical synthesis , Glycosides/pharmacology , Humans , Magnetic Resonance Spectroscopy , Molecular Conformation , Proteoglycans/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...