Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1224073, 2023.
Article in English | MEDLINE | ID: mdl-37528974

ABSTRACT

Introduction: Capparis spinosa L. fruits as edible and medicinal plant, has anti-inflammatory activities. The different morphological characteristics of C. spinosa fruits from Ili, Turpan, and Karamay may affect their anti-inflammatory components and functions. Methods: The anti-inflammatory activity of C. spinosa fruit was assessed using an LPS-induced inflammatory cell model. Furthermore, the differences in anti-inflammatory compounds were analyzed by metabolome and RNA-seq. Additionally, the anti-inflammatory mechanism was elucidated using network pharmacology. Results: In the study, we found that the 95% ethanol extracts (CSE) obtained from the three kinds of fruits showed remarkable anti-inflammatory effects both in vivo and in vitro. However, the CSE derived from Ili fruits significantly reduced CD86 levels on DCs. As a result of metabolomic analysis, the metabolic profiles of Ili fruits differed significantly from those of the other two habitats, which were consistent with transcriptome analysis. A total of 15 compounds exhibiting anti-inflammatory activity were subjected to screening, revealing a greater accumulation of flavonoids in the Turpan and Karamay districts. Notably, phenolic compounds were identified as the principal anti-inflammatory components in C. spinosa. Conclusion: There were significant differences in the morphology, metabolites, transcriptional levels, and anti-inflammatory activity of C. spinosa from the three districts.

2.
Int Immunopharmacol ; 121: 110490, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37339567

ABSTRACT

Syringaldehyde (SD), a kind of flavonoid polyphenolic small molecule compound, has the antioxidant and anti-inflammatory properties. But it is unknown whether SD has properties on the treatment of rheumatoid arthritis (RA) by modulating dendritic cells (DCs). We explored the effect of SD on the maturation of DCs in vitro and in vivo. The results showed that SD significantly down-regulated the expression of CD86, CD40 and MHC II, decreased the secretion of TNF-α, IL-6, IL-12p40 and IL-23, and increased IL-10 secretion and antigen phagocytosis in vitro induced by lipopolysaccharides in a dose-dependent manner through reducing the activation of MAPK/NF-κB signaling pathways. SD also significantly inhibited the expression of CD86, CD40 and MHC II on DCs in vivo. Moreover, SD suppressed the expression of CCR7 and the in vivo migration of DCs. In arthritis mouse models induced by λ-carrageenan and complete Freund's adjuvant, SD significantly alleviated paw and joint oedema, reduced the levels of pro-inflammatory cytokines TNF-α and IL-6 and increased the level of IL-10 in serum. Interestingly, SD significantly decreased the numbers of type I helper T cells (Th1), Th2, Th17 and Th17/Th1-like (CD4+IFN-γ+IL-17A+), but increased the numbers of regulatory T cells (Tregs) in spleens of mice. Importantly, the numbers of CD11c+IL-23+ and CD11c+IL-6+ cells were negatively correlated with the numbers of Th17 and Th17/Th1-like. These results suggested that SD ameliorated mouse arthritis through inhibiting the differentiation of Th1, Th17 and Th17/Th1-like and promoting the generation of Tregs via regulation of DC maturation.


Subject(s)
Arthritis , Interleukin-10 , Animals , Mice , Interleukin-10/metabolism , Th1 Cells , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Dendritic Cells , Cytokines/metabolism , Cell Differentiation , Interleukin-23/metabolism , Mice, Inbred C57BL
3.
Int J Biol Macromol ; 227: 1015-1026, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36460244

ABSTRACT

We previously demonstrated that Pleurotus ferulae polysaccharide (PFPS) promoted dendritic cell (DC) maturation through the TLR4 signaling pathway. To improve PFPS activity and bioavailability, gold nanoparticles with PFPS (PFPS-Au NPs) were synthesized. Of note, although the polysaccharide content of PFPS-Au NPs was only one tenth of PFPS, PFPS-Au NPs enhanced the immunostimulatory activities of PFPS in the maturation and function of dendritic cells (DCs) by TLR4 and NLRP3 signaling pathways, evidenced by stronger activation of the down-stream MAPK and NF-κB pathways and NLRP3 inflammasome pathway. More importantly, PFPS-Au NPs enhanced DC migration and murine immunity, particularly in type 1 T-helper cell responses. Moreover, the half-life of PFPS-Au NPs (2.217 ± 0.187 h) was longer than that of PFPS (1.39 ± 0.257 h) in the blood and the distribution of PFPS-Au NPs (19.8 %) in the spleen was significantly increased compared with PFPS (13.3 %), indicating the improved bioavailability in vivo. PFPS-Au NPs as an adjuvant promoted antigen-specific cellular immune responses to an HPV DC-based vaccine, which significantly inhibited the growth of TC-1 tumors in mice. All results suggest that the prepared Au NPs could enhance PFPS-immunostimulatory activity, which will pave the way for PFPS-Au NPs to be applied in clinical trials.


Subject(s)
Metal Nanoparticles , Nanoparticles , Pleurotus , Animals , Mice , Pleurotus/metabolism , Gold/pharmacology , Gold/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Toll-Like Receptor 4/metabolism , Polysaccharides/pharmacology , Polysaccharides/metabolism , Dendritic Cells
4.
BMC Complement Med Ther ; 22(1): 270, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36229811

ABSTRACT

BACKGROUND: Cistanche tubulosa is an editable and medicinal traditional Chinese herb and phenylethanoid glycosides are its major components, which have shown various beneficial effects such as anti-tumor, anti-oxidant and neuroprotective activities. However, the anti-obesity effect of C. tubulosa phenylethanoid glycosides (CTPG) and their regulatory effect on gut microbiota are still unclear. In the present study, we investigated its anti-obesity effect and regulatory effect on gut microbiota by 3T3-L1 cell model and obesity mouse model. METHODS: 3T3-L1 adipocytes were used to evaluate CTPG effects on adipogenesis and lipids accumulation. Insulin resistant 3T3-L1 cells were induced and used to measure CTPG effects on glucose consumption and insulin sensitivity. High-fat diet (HFD)-induced C57BL/6 obese mice were used to investigate CTPG effects on fat deposition, glucose and lipid metabolism, insulin resistance and intestinal microorganism. RESULTS: In vitro data showed that CTPG significantly decreased the triglyceride (TG) and non-esterified fatty acid (NEFA) contents of the differentiated 3T3-L1 adipocytes in a concentration-dependent manner without cytotoxicity, and high concentration (100 µg/ml) of CTPG treatment dramatically suppressed the level of monocyte chemoattractant protein-1 (MCP-1) in 3T3-L1 mature adipocytes. Meanwhile, CTPG increased glucose consumption and decreased NEFA level in insulin resistant 3T3-L1 cells. We further found that CTPG protected mice from the development of obesity by inhibiting the expansion of adipose tissue and adipocyte hypertrophy, and improved hepatic steatosis by activating AMPKα to reduce hepatic fat accumulation. CTPG ameliorated HFD-induced hyperinsulinemia, hyperglycemia, inflammation and insulin resistance by activating IRS1/Akt/GLUT4 insulin signaling pathway in white adipose tissue. Moreover, gut microbiota structure and metabolic functions in HFD-induced obese mice was changed by CTPG, especially short chain fatty acids-producing bacteria including Blautia, Roseburia, Butyrivibrio and Bacteriodes were significantly increased by CTPG treatment. CONCLUSIONS: CTPG effectively suppressed adipogenesis and lipid accumulation in 3T3-L1 adipocytes and ameliorated HFD-induced obesity and insulin resistance through activating AMPKα and IRS1/AKT/GLUT4 signaling pathway and regulating the composition and metabolic functions of gut microbiota.


Subject(s)
Cistanche , Insulin Resistance , Insulins , 3T3-L1 Cells , Adipocytes , Adipogenesis , Animals , Antioxidants/pharmacology , Chemokine CCL2 , Cistanche/metabolism , Diet, High-Fat , Fatty Acids, Nonesterified/metabolism , Fatty Acids, Nonesterified/pharmacology , Glucose/metabolism , Glycosides/metabolism , Glycosides/pharmacology , Insulins/metabolism , Insulins/pharmacology , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Triglycerides/metabolism
5.
Mar Drugs ; 20(3)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35323496

ABSTRACT

Low molecular weight fucoidan (LMWF) has been reported to have immunomodulation effects through the increase of the activation and function of macrophages. In this study, the regulating effect of LMWF from Undaria pinnatifida grown in New Zealand on dendritic cells (DCs) was investigated. We discovered that LMWF could stimulate DCs' maturation and migration, as well as CD4+ and CD8+ T cells' proliferation in vitro. We proved that this immune promoting activity is activated through TLR4 and its downstream MAPK and NF-κB signaling pathways. Further in vivo (mouse model) investigation showed that LMWF has a strong immunological boosting effect, such as facilitating the proliferation of immune cells and increasing the index of immune organs. These findings suggest that LMWF has a positive immunomodulatory effect and is a promising candidate to supplement cancer immunotherapy.


Subject(s)
Dendritic Cells/drug effects , Immunologic Factors/pharmacology , Polysaccharides/pharmacology , Undaria , Animals , Cell Movement/drug effects , Cell Proliferation/drug effects , Dendritic Cells/metabolism , Immunologic Factors/chemistry , Interleukin-12 Subunit p40/metabolism , Mice, Inbred C57BL , Mice, Inbred ICR , Mitogen-Activated Protein Kinases/metabolism , Molecular Weight , NF-kappa B/metabolism , New Zealand , Polysaccharides/chemistry , Spleen/drug effects , T-Lymphocytes/drug effects , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
6.
PeerJ ; 8: e8294, 2020.
Article in English | MEDLINE | ID: mdl-32030319

ABSTRACT

BACKGROUND: The enhancement of immunity is very important for immunocompromised patients such as cancer patients with radiotherapy or chemotherapy. Glycyrrhiza uralensis has been used as food and medicine for a long history. G. uralensis polysaccharides (GUPS) were prepared and its immunostimulatory effects were investigated. METHODS: Human monocyte-derived dendritic cells (DCs) and murine bone marrow-derived DCs were treated with different concentrations of GUPS. The DCs maturation and cytokine production were analyzed by flow cytometry and ELISA, respectively. Inhibitors and Western blot were used to study the mechanism of GUPS. The immunostimulatory effects of GUPS were further evaluated by naïve mouse model and immunosuppressive mouse model induced by cyclophosphamide. RESULTS: GUPS significantly promoted the maturation and cytokine secretion of human monocyte-derived DCs and murine bone marrow-derived DCs through TLR4 and down-stream p38, JNK and NF-κB signaling pathways. Interestingly, the migration of GUPS treated-DCs to lymph node was increased. In the mouse model, GUPS increased IL-12 production in sera but not for TNF-α. Moreover, GUPS ameliorated the side effect of cyclophosphamide and improved the immunity of immunosuppressive mice induced by cyclophosphamide. These results suggested that GUPS might be used for cancer therapy to ameliorate the side effect of chemotherapy and enhance the immunity.

7.
Biomolecules ; 10(1)2020 01 19.
Article in English | MEDLINE | ID: mdl-31963790

ABSTRACT

Glycyrrhiza uralensis is a Chinese herbal medicine with various bioactivities. Three fractions (GUPS-I, GUPS-II and GUPS-III) of G. uralensis polysaccharides (GUPS) were obtained with molecular weights of 1.06, 29.1, and 14.9 kDa, respectively. The monosaccharide compositions of GUPS-II and GUPS-III were similar, while that of GUPS-I was distinctively different. The results of scanning electron microscopy, FT-IR, and NMR suggested that GUPS-II and GUPS-III were flaky with a smooth surface and contained α- and ß-glycosidic linkages, while GUPS-I was granulated and contained only α-glycosidic linkages. Moreover, GUPS-II and GUPS-III exhibited better bioactivities on the maturation and cytokine production of dendritic cells (DCs) in vitro than that of GUPS-I. An in vivo experiment showed that only GUPS-II significantly enhanced the maturation of DCs. These results indicate that GUPS-II has the potential to be used in combination with cancer immunotherapy to enhance the therapeutic effect.


Subject(s)
Adjuvants, Immunologic/chemistry , Drugs, Chinese Herbal/chemistry , Glycyrrhiza uralensis/chemistry , Polysaccharides/chemistry , Adjuvants, Immunologic/isolation & purification , Adjuvants, Immunologic/pharmacology , Animals , Cells, Cultured , Dendritic Cells/cytology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/pharmacology , Mice, Inbred C57BL , Plant Roots/chemistry , Polysaccharides/isolation & purification , Polysaccharides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...