Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37906413

ABSTRACT

The lipopeptides produced by Bacillus subtilis have anti-cancer potential. We had previously identified a secondary metabolite of B. subtilis strain Z15 (BS-Z15), which has an operon that regulates lipopeptide synthesis, and also demonstrated that the fermentation products of this strain exerted antioxidant and pro-immune effects. The purpose of this study was to investigate in vitro and in vivo the anticancer effects of BS-Z15 secondary metabolites (BS-Z15 SMs) on hepatocellular carcinoma (HCC) cells. BS-Z15 SMs significantly inhibited H22 cell-derived murine xenograft tumor growth without any systemic toxicity. In addition, BS-Z15 SMs decreased the viability of H22 cells and BEL-7404 cells in vitro with respective IC50 values of 33.83 and 27.26 µg/mL. Consistent with this, BS-Z15 SMs induced apoptosis and G0/G1 phase arrest in the BEL-7404 cells, and the mitochondrial membrane potential was also significantly reduced in a dose-dependent manner. Mechanistically, BS-Z15 SMs upregulated the pro-apoptotic p53, Bax, cytochrome C, and cleaved-caspase-3/9 proteins and downregulated the anti-apoptotic Bcl-2. These findings suggest that the induction of apoptosis in HCC cells by BS-Z15 SMs may be related to the mitochondrial pathway. Thus, the secondary metabolites of B. subtilis strain Z15 are promising to become new anti-cancer drugs for the clinical treatment of liver cancer.

3.
BMC Genomics ; 24(1): 273, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37208602

ABSTRACT

BACKGROUND: Previous studies have shown that secondary metabolites of Bacillus subtilis strain Z15 (BS-Z15) are effective in treating fungal infections in mice. To evaluate whether it also modulates immune function in mice to exert antifungal effects, we investigated the effect of BS-Z15 secondary metabolites on both the innate and adaptive immune functions of mice, and explored its molecular mechanism through blood transcriptome analysis. RESULTS: The study showed that BS-Z15 secondary metabolites increased the number of monocytes and platelets in the blood, improved natural killer (NK) cell activity and phagocytosis of monocytes-macrophages, increased the conversion rate of lymphocytes in the spleen, the number of T lymphocytes and the antibody production capacity of mice, and increased the levels of Interferon gamma (IFN-γ), Interleukin-6 (IL-6), Immunoglobulin G (IgG) and Immunoglobulin M (IgM) in plasma. The blood transcriptome analysis revealed 608 differentially expressed genes following treatment with BS-Z15 secondary metabolites, all of which were significantly enriched in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms for immune-related entries and pathways such as Tumor Necrosis Factor (TNF) and Toll-like receptor (TLR) signaling pathways, and upregulated expression levels of immune-related genes such as Complement 1q B chain (C1qb), Complement 4B (C4b), Tetracyclin Resistant (TCR) and Regulatory Factor X, 5 (RFX5). CONCLUSIONS: BS-Z15 secondary metabolites were shown to enhance innate and adaptive immune function in mice, laying a theoretical foundation for its development and application in the field of immunity.


Subject(s)
Bacillus subtilis , Killer Cells, Natural , Animals , Mice , Killer Cells, Natural/metabolism , T-Lymphocytes/metabolism , Interferon-gamma , Phagocytosis
4.
Front Plant Sci ; 13: 1088220, 2022.
Article in English | MEDLINE | ID: mdl-36815011

ABSTRACT

Microbial-plant interactions protect plants from external stimuli, releasing various elicitor that activate the plants defense response and regulate its growth. Bacillus subtilis BS-Z15 was screened from cotton inter-rhizosphere soil, antagonized various plant pathogens, and protected cotton against Verticillium dahliae. This study showed that the BS-Z15 lipopeptide mycosubtilin homologue could act as an elicitor to induce systemic resistance (ISR) in plants. Mycosubtilin homologue induced ROS burst and deposition, callose deposition, MAPK cascade phosphorylation, and up-regulated PR1 and PDF1.2 gene expression in Arabidopsis seedlings, moreover enhanced resistance of Arabidopsis to Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000) and V. dahliae. Transcriptome analysis was then used to evaluate the impact of mycosubtilin homologue on plant gene expression control. Mycosubtilin homologues activated Arabidopsis ISR on genes in metabolic pathways such as Arabidopsis plant-pathogen interactions, phenylpropanoid biosynthesis, MAPK signaling pathway, and phytohormone signaling. These analyses revealed that mycosubtilin homologues mediate the regulation of plant systemic resistance and growth and development by affecting related metabolites in glycolysis and gluconeogenesis, pentose phosphate pathway, tricarboxylic acid cycle, and amino acid metabolism in Arabidopsis. These findings confirmed that a mycosubtilin homologue could trigger the initiation of the Arabidopsis ISR by interacting with a variety of PTI components and transcriptional metabolic signaling pathways.

SELECTION OF CITATIONS
SEARCH DETAIL
...