Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 8: 701386, 2021.
Article in English | MEDLINE | ID: mdl-34458305

ABSTRACT

A current hypothesis is that dialysis-treated patients are "anabolic resistant" i. e., their muscle protein synthesis (MPS) response to anabolic stimuli is blunted, an effect which leads to muscle wasting and poor physical performance in aging and in several chronic diseases. The importance of maintaining muscle mass and MPS is often neglected in dialysis-treated patients; better than to describe mechanisms leading to energy-protein wasting, the aim of this narrative review is to suggest possible strategies to overcome anabolic resistance in this patient's category. Food intake, in particular dietary protein, and physical activity, are the two major anabolic stimuli. Unfortunately, dialysis patients are often aged and have a sedentary behavior, all conditions which per se may induce a state of "anabolic resistance." In addition, patients on dialysis are exposed to amino acid or protein deprivation during the dialysis sessions. Unfortunately, the optimal amount and formula of protein/amino acid composition in supplements to maximixe MPS is still unknown in dialysis patients. In young healthy subjects, 20 g whey protein maximally stimulate MPS. However, recent observations suggest that dialysis patients need greater amounts of proteins than healthy subjects to maximally stimulate MPS. Since unneccesary amounts of amino acids could stimulate ureagenesis, toxins and acid production, it is urgent to obtain information on the optimal dose of proteins or amino acids/ketoacids to maximize MPS in this patients' population. In the meantime, the issue of maintaining muscle mass and function in dialysis-treated CKD patients needs not to be overlooked by the kidney community.

2.
Nutrients ; 13(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383799

ABSTRACT

A low protein diet (LPD) has historically been used to delay uremic symptoms and decrease nitrogen (N)-derived catabolic products in patients with chronic kidney disease (CKD). In recent years it has become evident that nutritional intervention is a necessary approach to prevent wasting and reduce CKD complications and disease progression. While a 0.6 g/kg, high biological value protein-based LPD has been used for years, recent observational studies suggest that plant-derived LPDs are a better approach to nutritional treatment of CKD. However, plant proteins are less anabolic than animal proteins and amino acids contained in plant proteins may be in part oxidized; thus, they may not completely be used for protein synthesis. In this review, we evaluate the role of LPDs and plant-based LPDs on maintaining skeletal muscle mass in patients with CKD and examine different nutritional approaches for improving the anabolic properties of plant proteins when used in protein-restricted diets.


Subject(s)
Animal Proteins, Dietary , Diet, Protein-Restricted , Plant Proteins, Dietary , Renal Insufficiency, Chronic/diet therapy , Aging , Amino Acids , Animals , Chronic Disease , Diet, High-Protein , Disease Progression , Humans , Muscle, Skeletal , Nitrogen , Plant Proteins/genetics , Sarcopenia
SELECTION OF CITATIONS
SEARCH DETAIL
...