Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Med Imaging ; 18(9): 939-951, 2022.
Article in English | MEDLINE | ID: mdl-35249498

ABSTRACT

BACKGROUND: This paper presents an improved radar-based imaging system for breast cancer detection that features p-slot ultrawideband antennae in a 32-array set-up. The improved reconstruction algorithm incorporates the phase coherence factor (PCF) into the conventional delay and sum (DAS) beamforming algorithm, thus effectively suppressing noise arising from the side- and gratinglobe interferences. METHODS: The system is tested by using several breast models fabricated from chemical mixtures formulated on the basis of realistic human tissues. Each model is placed in a hemispherical breast radome that was fabricated from polylactide material and surrounded by 32 p-slot antennae mounted in four concentric layers. These antennae are connected to an 8.5 GHz vector network analyser through two 16-channel multiplexers that automatically switch different combinations of transmitter and receiver pairs in a sequential manner. RESULTS: The system can accurately detect 5 mm tumours in a complex and homogeneously dense 3D breast model with an average signal-to-clutter ratio and full-width half-maximum of 7.0 dB and 2.3 mm, respectively. These values are more competitive than the values of other beamforming algorithms, even with contrasts as low as 1:2. CONCLUSION: The proposed PCF-weighted DAS is the best-performing algorithm amongst the tested beamforming techniques. This research paves the way for a clinical trial involving human subjects. Our laboratory is planning such a trial as part of future work.


Subject(s)
Image Processing, Computer-Assisted , Microwaves , Algorithms , Humans , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional , Phantoms, Imaging
2.
ACS Appl Mater Interfaces ; 11(31): 28033-28042, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31314485

ABSTRACT

The rapid progress in electronic applications for movable devices requires the conductive matrix to be not only flexible but also stretchable. A simple microstrip patch antenna was fabricated based on silver ink polysiloxane composite with a stretchable polysiloxane substrate at a resonance frequency of 2.50 GHz. It is designed at a postpercolation threshold of 35, 45, and 60 vol % conductive filler loading so as to allow a consistent conductivity at an ample range of cyclic stretching. With the presence of coupling agent and additives, the patch antenna displayed an extremely good adhesion between the ink and the substrate, which prevents any local rupture during stretching. Variable range hopping model verified that conductivity occurs through hopping and tunneling mechanisms, giving transient optimum conductivity in the range of 10-70 S/cm at 10-20% strain amplitude range. The fabricated prototype of microstrip patch antenna displayed a decreasing resonant frequency with strain. Of note, the radiation loss S11 and the bandwidth values are proportionally related to the conductivities during stretching. These results verified the proposed mechanisms of construction and destruction of conductivity occurring during the percolation threshold process. The fabricated antenna proved the feasibility for use as a stretchable device at an ultrahigh-frequency band.


Subject(s)
Equipment Design , Siloxanes , Silver , Wearable Electronic Devices , Wireless Technology
3.
Nanomicro Lett ; 8(4): 291-311, 2016.
Article in English | MEDLINE | ID: mdl-30460289

ABSTRACT

Electroceramic calcium copper titanates (CaCu3Ti4O12, CCTO), with high dielectric permittivities (ε) of approximately 105 and 104, respectively, for single crystal and bulk materials, are produced for a number of well-established and emerging applications such as resonator, capacitor, and sensor. These applications take advantage of the unique properties achieved through the structure and properties of CCTO. This review comprehensively focuses on the primary processing routes, effect of impurity, dielectric permittivity, and deposition technique used for the processing of electroceramics along with their chemical composition and micro and nanostructures. Emphasis is given to versatile and basic approaches that allow one to control the microstructural features that ultimately determine the properties of the CCTO ceramic. Despite the intensive research in this area, none of the studies available in the literature provides all the possible relevant information about CCTO fabrication, structure, the factors influencing its dielectric properties, CCTO immobilization, and sensing applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...