Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 268: 129297, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33359987

ABSTRACT

Crustaceans are important ecosystem bio-indicators but their response to pollutants such as polyaromatic hydrocarbons (PAHs) remains understudied, particularly in freshwater habitats. Here we investigated the effect of phenanthrene (at 0.5, 1.0 and 1.5 mg L-1), a 3-ringed PAH associated with petroleum-based aquatic pollution on survival, in vivo and in situ cardiac performance, the oxidative stress response and the tissue burden in the signal crayfish (Pacifastacus leniusculus). Non-invasive sensors were used to monitor heart rate during exposure. Phenanthrene reduced maximum attainable heart rate in the latter half (days 8-15) of the exposure period but had no impact on routine heart rate. At the end of the 15-day exposure period, the electrical activity of the semi-isolated in situ crayfish heart was assessed and significant prolongation of the QT interval of the electrocardiogram was observed. Enzyme pathways associated with oxidative stress (superoxide dismutase and total oxyradical scavenging capacity) were also assessed after 15 days of phenanthrene exposure in gill, hepatopancreas and skeletal muscle; the results suggest limited induction of protective antioxidant pathways. Lastly, we report that 15 days exposure caused a dose-dependent increase in phenanthrene in hepatopancreas and heart tissues which was associated with reduced survivability. To our knowledge, this study is the first to provide such a thorough understanding of the impact of phenanthrene on a crustacean.


Subject(s)
Phenanthrenes , Water Pollutants, Chemical , Animals , Astacoidea , Ecosystem , Oxidative Stress , Phenanthrenes/toxicity , Water Pollutants, Chemical/toxicity
2.
Chemosphere ; 239: 124608, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31499312

ABSTRACT

Freshwater systems are faced with a myriad of stressors including geomorphological alterations, nutrient overloading and pollution. Previous studies in marine fish showed polyaromatic hydrocarbons (PAHs) to be cardiotoxic. However, the cardiotoxicity of anthropogenic pollutants in freshwater fishes is unclear and has not been examined across multiple levels of cardiac organization. Here we investigated the effect of phenanthrene (Phe), a pervasive anthropogenic pollutant on a sentinel freshwater species, the brown trout (Salmo trutta). We first examined the electrical activity of the whole heart and found prolongation (∼8.6%) of the QT interval (time between ventricular depolarization and repolarization) of the electrocardiogram (ECG) and prolongation (∼13.2%) of the monophasic action potential duration (MAPD) following ascending doses of Phe. At the tissue level, Phe significantly reduced trabecular force generation by ∼24% at concentration 15 µM and above, suggesting Phe reduces cellular calcium cycling. This finding was supported by florescent microscopy showing a reduction (∼39%) in the intracellular calcium transient amplitude following Phe exposure in isolated brown trout ventricular myocytes. Single-cell electrophysiology was used to reveal the mechanism underlying contractile and electrical dysfunction following Phe exposure. A Phe-dependent reduction (∼38%) in the L-type Ca2+ current accounts, at least in part, for the lowered Ca2+ transient and force production. Prolongation of the MAPD and QT interval was explained by a reduction (∼70%) in the repolarising delayed rectifier K+ current following Phe exposure. Taken together, our study shows a direct impact of Phe across multiple levels of cardiac organization in a key freshwater salmonid.


Subject(s)
Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Phenanthrenes/toxicity , Trout/physiology , Water Pollutants, Chemical/toxicity , Animals , Cardiotoxicity , Electrocardiography , Fresh Water/chemistry
3.
Ecotoxicol Environ Saf ; 151: 98-108, 2018 Apr 30.
Article in English | MEDLINE | ID: mdl-29329099

ABSTRACT

The use of free range animals for monitoring environmental health offers opportunities to detect exposure and assess the toxicological effects of pollutants in terrestrial ecosystems. Potential human health risk of dietary intake of metals and metalloid via consumption of offal and muscle of free range chicken, cattle and goats by the urban population in Benin City was evaluated. Muscle, gizzard, liver and kidney samples were analyzed for Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, and Pb concentrations using inductively coupled plasma mass spectrometer (ICP-MS) while Hg was determined using Hg analyzer. Mean concentrations of metals (mg/kg ww) varied significantly depending upon the tissues and animal species. Human health risk estimations for children and adults showed estimated daily intake (EDI) values of tissues below oral reference dose (RfD) threshold for non essential metals Cd, As, Pb and Hg thus strongly indicating no possible health risk via consumption of animal based food. Calculated Hazard quotient (THQ) was less than 1 (< 1) for all the metals analyzed for both adult and children. However, Cd and As had the highest value of THQ suggestive of possible health risk associated with continuous consumption of Cd and As contaminated animal based foods. Hazard Index (HI) for additive effect of metals was higher in chicken liver and gizzard for children and chicken liver for adults. Thus, HI indicated that chicken liver and gizzard may contribute significantly to adult and children dietary exposure to heavy metals. Principal component analysis (PCA) showed a clear species difference in metal accumulation between chickens and the ruminants. This study provides baseline data for future studies and also valuable evidence of anthropogenic impacts necessary to initiate national and international policies for control of heavy metal and metalloid content in food items.


Subject(s)
Environmental Pollutants/analysis , Food Contamination , Metalloids/analysis , Metals, Heavy/analysis , Adult , Animals , Cattle , Chickens , Child , Cities , Environmental Monitoring , Goats , Humans , Meat/analysis , Muscles/chemistry , Nigeria , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...