Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 54(15): 7230-8, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-25924673

ABSTRACT

A number of Ln2O2MSe2 (Ln = La and Ce; M = Fe, Zn, Mn, and Cd) compounds, built from alternating layers of fluorite-like [Ln2O2](2+) sheets and antifluorite-like [MSe2](2-) sheets, have recently been reported in the literatures. The available MSe4/2 tetrahedral sites are half-occupied, and different compositions display different ordering patterns: [MSe2](2-) layers contain MSe4/2 tetrahedra that are exclusively edge-sharing (stripe-like), exclusively corner-sharing (checkerboard-like), or mixtures of both. This paper reports 60 new compositions in this family. We reveal that the transition-metal arrangement can be systematically controlled by either Ln or M doping, leading to an "infinitely adaptive" structural family. We show how this is achieved in La2O2Fe1-xZnxSe2, La2O2Zn1-xMnxSe2, La2O2Mn1-xCdxSe2, Ce2O2Fe1-xZnxSe2, Ce2O2Zn1-xMnxSe2, Ce2O2Mn1-xCdxSe2, La2-yCeyO2FeSe2, La2-yCeyO2ZnSe2, La2-yCeyO2MnSe2, and La2-yCeyO2CdSe2 solid solutions.

2.
Inorg Chem ; 54(4): 1563-71, 2015 Feb 16.
Article in English | MEDLINE | ID: mdl-25584771

ABSTRACT

The quaternary transition metal oxyselenide Ce2O2ZnSe2 has been shown to adopt a ZrCuSiAs-related structure with Zn(2+) cations in a new ordered arrangement within [ZnSe2](2-) layers. The color of the compound changes as a function of cell volume, which can vary by ∼0.4% under different synthetic conditions. At the highest, intermediate, and lowest cell volumes, the color is yellow-ochre, brown, and black, respectively. The decreased volume is attributed to oxidation of Ce from 3+ to 4+, the extent of which can be controlled by synthetic conditions. Ce2O2ZnSe2 is a semiconductor at all cell volumes with experimental optical band gaps of 2.2, 1.4, and 1.3 eV for high, intermediate, and low cell volume samples, respectively. SQUID measurements show Ce2O2ZnSe2 to be paramagnetic from 2 to 300 K with a negative Weiss temperature of θ = -10 K, suggesting weak antiferromagnetic interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...