Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Stem Cell ; 29(3): 355-371.e10, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35245467

ABSTRACT

Biliary diseases can cause inflammation, fibrosis, bile duct destruction, and eventually liver failure. There are no curative treatments for biliary disease except for liver transplantation. New therapies are urgently required. We have therefore purified human biliary epithelial cells (hBECs) from human livers that were not used for liver transplantation. hBECs were tested as a cell therapy in a mouse model of biliary disease in which the conditional deletion of Mdm2 in cholangiocytes causes senescence, biliary strictures, and fibrosis. hBECs are expandable and phenotypically stable and help restore biliary structure and function, highlighting their regenerative capacity and a potential alternative to liver transplantation for biliary disease.


Subject(s)
Liver Transplantation , Animals , Bile Ducts/pathology , Epithelial Cells/pathology , Fibrosis , Humans , Living Donors , Mice
3.
Nat Med ; 22(7): 771-9, 2016 07.
Article in English | MEDLINE | ID: mdl-27270587

ABSTRACT

The discovery of genetic mechanisms for resistance to obesity and diabetes may illuminate new therapeutic strategies for the treatment of this global health challenge. We used the polygenic 'lean' mouse model, which has been selected for low adiposity over 60 generations, to identify mitochondrial thiosulfate sulfurtransferase (Tst; also known as rhodanese) as a candidate obesity-resistance gene with selectively increased expression in adipocytes. Elevated adipose Tst expression correlated with indices of metabolic health across diverse mouse strains. Transgenic overexpression of Tst in adipocytes protected mice from diet-induced obesity and insulin-resistant diabetes. Tst-deficient mice showed markedly exacerbated diabetes, whereas pharmacological activation of TST ameliorated diabetes in mice. Mechanistically, TST selectively augmented mitochondrial function combined with degradation of reactive oxygen species and sulfide. In humans, TST mRNA expression in adipose tissue correlated positively with insulin sensitivity in adipose tissue and negatively with fat mass. Thus, the genetic identification of Tst as a beneficial regulator of adipocyte mitochondrial function may have therapeutic significance for individuals with type 2 diabetes.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Type 2/genetics , Insulin Resistance/genetics , Mitochondria/metabolism , Obesity/genetics , Thiosulfate Sulfurtransferase/genetics , Animals , Cell Differentiation , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Gene Knock-In Techniques , Glucose Clamp Technique , Glucose Tolerance Test , Humans , Mice , Mice, Inbred Strains , Mice, Transgenic , Models, Animal , Molecular Targeted Therapy , Obesity/metabolism , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Thiosulfate Sulfurtransferase/metabolism
4.
J Med Chem ; 49(23): 6858-68, 2006 Nov 16.
Article in English | MEDLINE | ID: mdl-17154516

ABSTRACT

We report structure-activity relationships for organometallic RuII complexes of the type [(eta6-arene)Ru(XY)Cl]Z, where XY is an N,N- (diamine), N,O- (e.g., amino acidate), or O,O- (e.g., beta-diketonate) chelating ligand, the arene ranges from benzene derivatives to fused polycyclic hydrocarbons, and Z is usually PF6. The X-ray structures of 13 complexes are reported. All have the characteristic "piano-stool" geometry. The complexes most active toward A2780 human ovarian cancer cells contained XY=ethylenediamine (en) and extended polycyclic arenes. Complexes with polar substituents on the arene or XY=bipyridyl derivatives exhibited reduced activity. The activity of the O,O-chelated complexes depended strongly on the substituents and on the arene. For arene=p-cymene, XY=amino acidate complexes were inactive. Complexes were not cross-resistant with cisplatin, and cross-resistance to Adriamycin was circumvented by replacing XY=en with 1,2-phenylenediamine. Some complexes were also active against colon, pancreatic, and lung cancer cells.


Subject(s)
Antineoplastic Agents/chemical synthesis , Organometallic Compounds/chemical synthesis , Ruthenium , 2,2'-Dipyridyl/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Benzene Derivatives/chemistry , Carboplatin/pharmacology , Cell Line, Tumor , Chelating Agents/chemistry , Cisplatin/pharmacology , Crystallography, X-Ray , Diamines/chemistry , Doxorubicin/pharmacology , Drug Screening Assays, Antitumor , Humans , Ligands , Molecular Structure , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Polycyclic Compounds/chemistry , Structure-Activity Relationship
5.
J Am Chem Soc ; 128(5): 1739-48, 2006 Feb 08.
Article in English | MEDLINE | ID: mdl-16448150

ABSTRACT

The Os(II) arene ethylenediamine (en) complexes [(eta(6)-biphenyl)Os(en)Cl][Z], Z = BPh(4) (4) and BF(4) (5), are inactive toward A2780 ovarian cancer cells despite 4 being isostructural with an active Ru(II) analogue, 4R. Hydrolysis of 5 occurred 40 times more slowly than 4R. The aqua adduct 5A has a low pK(a) (6.3) compared to that of [(eta(6)-biphenyl)Ru(en)(OH(2))](2+) (7.7) and is therefore largely in the hydroxo form at physiological pH. The rate and extent of reaction of 5 with 9-ethylguanine were also less than those of 4R. We replaced the neutral en ligand by anionic acetylacetonate (acac). The complexes [(eta(6)-arene)Os(acac)Cl], arene = biphenyl (6), benzene (7), and p-cymene (8), adopt piano-stool structures similar to those of the Ru(II) analogues and form weak dimers through intermolecular (arene)C-H...O(acac) H-bonds. Remarkably, these Os(II) acac complexes undergo rapid hydrolysis to produce not only the aqua adduct, [(eta(6)-arene)Os(acac)(OH(2))](+), but also the hydroxo-bridged dimer, [(eta(6)-arene)Os(mu(2)-OH)(3)Os(eta(6)-arene)](+). The pK(a) values for the aqua adducts 6A, 7A, and 8A (7.1, 7.3, and 7.6, respectively) are lower than that for [(eta(6)-p-cymene)Ru(acac)(OH(2))](+) (9.4). Complex 8A rapidly forms adducts with 9-ethylguanine and adenosine, but not with cytidine or thymidine. Despite their reactivity toward nucleobases, complexes 6-8 were inactive toward A549 lung cancer cells. This is attributable to rapid hydrolysis and formation of unreactive hydroxo-bridged dimers which, surprisingly, were the only species present in aqueous solution at biologically relevant concentrations. Hence, the choice of chelating ligand in Os(II) (and Ru(II)) arene complexes can have a dramatic effect on hydrolysis behavior and nucleobase binding and provides a means of tuning the reactivity and the potential for discovery of anticancer complexes.


Subject(s)
Benzene Derivatives/chemistry , Benzene Derivatives/pharmacology , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Osmium/chemistry , Ruthenium/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Benzene Derivatives/chemical synthesis , Cell Line, Tumor , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Female , Humans , Organometallic Compounds/chemical synthesis , Ovarian Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...