Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Cancers (Basel) ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38730703

ABSTRACT

Plant-derived polyphenols are bioactive compounds with potential health-promoting properties including antioxidant, anti-inflammatory, and anticancer activity. However, their beneficial effects and biomedical applications may be limited due to their low bioavailability. In the present study, we have considered a microencapsulation-based drug delivery system to investigate the anticancer effects of polyphenol-rich (apigenin, caffeic acid, and luteolin) fractions, extracted from a cereal crop pearl millet (Pennisetum glaucum), using three phenotypically different cellular models of breast cancer in vitro, namely triple negative HCC1806, ER-positive HCC1428, and HER2-positive AU565 cells. Encapsulated polyphenolic extract induced apoptotic cell death in breast cancer cells with different receptor status, whereas it was ineffective against non-tumorigenic MCF10F cells. Encapsulated polyphenolic extract was also found to be cytotoxic against drug-resistant doxorubicin-induced senescent breast cancer cells that were accompanied by increased levels of apoptotic and necrotic markers, cell cycle inhibitor p21 and proinflammatory cytokine IL8. Furthermore, diverse responses to the stimulation with encapsulated polyphenolic extract in senescent breast cancer cells were observed, as in the encapsulated polyphenolic extract-treated non-proliferating AU565 cells, the autophagic pathway, here cytotoxic autophagy, was also induced, as judged by elevated levels of beclin-1 and LC3b. We show for the first time the anti-breast cancer activity of encapsulated polyphenolic extract of pearl millet and postulate that microencapsulation may be a useful approach for potentiating the anticancer effects of phytochemicals with limited bioavailability.

2.
Antioxidants (Basel) ; 13(3)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38539858

ABSTRACT

The historical use of plants as sources of natural compounds has persisted over time. Increasing the intake of bioactive substances shows significant potential for promoting overall well-being and health. This study delves into the pigments, phenolic composition, and profile, along with antioxidant properties, of leaf extracts rich in bioactives from plants in the Azores region, contributing to sustainable primary food production. Analyses encompassed chlorophylls, carotenoids, total phenols, ortho-diphenols, and flavonoids, as well as antioxidant capacity assessment, polyphenolic profiling, and quantification. Psidium guajava L. and Smallanthus sonchifolius (Poepp.) H.Rob. exhibited elevated chlorophyll content, while Colocasia esculenta (L.) Schott displayed the highest carotenoid levels. Annona cherimola Mill., Eriobotrya japonica (Thunb.) Lindl, and Psidium guajava L. demonstrated pronounced total phenols, ortho-diphenols, and flavonoids. These findings align with heightened antioxidant capacity. HPLC-DAD (high-performance liquid chromatography with diode-array detection) characterization unveiled elevated hydroxycinnamic acids in E. japonica and Ipomea batatas (L.) Lam. compared to A. cherimola Mill., while C. esculenta exhibited increased flavone content. Among the quantified compounds, flavonols were the ones that predominantly demonstrated contribution to the antioxidant capacity of these leaves. This research highlights Azorean leaf plants' antioxidant potential, fostering natural product development for better health.

3.
Antibiotics (Basel) ; 12(7)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37508182

ABSTRACT

Antimicrobial resistance is increasing globally and is now one of the major public health problems. Therefore, there is a need to search for new antimicrobial agents. The food industry generates large amounts of by-products that are rich in bioactive compounds, such as phenolic compounds, which are known to have several health benefits, including antioxidant and antimicrobial properties. Thus, we aimed to characterize the phenolic compounds present in pomegranate, quince, and persimmon by-products, as well as their antioxidant and antimicrobial activities. Phenolic compounds were extracted from pomegranate, quince, and persimmon leaves, seeds, and peels using a mixture of ethanol/water (80/20). The polyphenol profile of the extracts was determined by high-performance liquid chromatography. The antioxidant activity of the extracts was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and cupric reducing antioxidant capacity (CUPRAC) methods. Antimicrobial susceptibility was evaluated using the Kirby-Bauer disk diffusion method. In general, leaves showed higher concentrations of phenolics than the peel and seeds of fruits. In total, 23 phenolic compounds were identified and quantified, with sanguiin and apigenin-3-O-galactoside being present in the highest concentrations. Leaf extracts of pomegranate showed higher antioxidant activities than the other components in all methods used. In general, all extracts had a greater antimicrobial activity against Gram-positive bacteria. Persimmon leaf and seed extracts inhibited a greater number of bacteria, both Gram-positive and -negative. The lowest minimum inhibitory concentration (MIC) detected among Gram-positive and -negative bacteria was 10 mg/mL for pomegranate peel and leaf extracts against Staphylococcus aureus and S. pseudintermedius and for pomegranate leaf extract against Escherichia coli. Our results reinforce the need to value food industry by-products that could be used as food preservatives and antibiotic adjuvants against multiresistant bacteria.

4.
Metabolites ; 13(4)2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37110182

ABSTRACT

The use of ultrasound-assisted extraction (UAE) of bioactive compounds has been increasing because it is a good alternative to the conventional extraction methods. UAE was used to maximize total polyphenol content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity, and ferric reducing antioxidant power (FRAP) of the mushroom Inonotus hispidus using response surface methodology (RSM). Firstly, the effect of 40% (v/v) ethanol and 80% (v/v) methanol on the TPC, DPPH scavenging capacity, and FRAP was evaluated. The ethanolic extracts showed a significantly higher (p < 0.0001) TPC, DPPH scavenging capacity, and FRAP than the methanolic extracts. The best condition to produce an extract with the higher TPC and antioxidant activity was achieved when using 40% (v/v) ethanol, a ratio of 75 mL/g, and an extraction time of 20 min. The chromatographic profile of the extract obtained in the optimized condition revealed that hispidin is the main polyphenol present in the extracts of I. hispidus, representing, together with hispidin-like compounds, the majority of the phenolic compounds (159.56 µg/g DW out of 219.01 µg/g DW). The model allowed us to optimize the conditions to maximize the extraction of phenolic compounds with antioxidant activity from I. hispidus, demonstrating its potential as a source of antioxidant compounds, with possible industrial, pharmaceutical, and food applications.

5.
Foods ; 12(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36900459

ABSTRACT

The possibility that nut intake may defend human health is an interesting point of view and has been investigated worldwide. Consequently, nuts are commonly promoted as healthy. In recent decades, the number of investigations proposing a correlation between nut consumption and a decrease in the risk of key chronic diseases has continued to increase. Nuts are a source of intake of fiber, and dietary fiber is associated with a reduced occurrence of obesity and cardiovascular diseases. Nuts likewise provide minerals and vitamins to the diet and supply phytochemicals that function as antioxidant, anti-inflammatory, and phytoestrogens agents and other protective mechanisms. Therefore, the main goal of this overview is to summarize current information and to describe the utmost new investigation concerning the health benefits of certain nuts.

6.
Article in English | MEDLINE | ID: mdl-36294295

ABSTRACT

Home gardening has a long history that started when humans became sedentary, being traditionally considered an accessible source of food and medicinal plants to treat common illnesses. With trends towards urbanization and industrialization, particularly in the post-World War II period, the importance of home gardens as important spaces for growing food and medicinal plants reduced and they began to be increasingly seen as decorative and leisure spaces. However, the growing awareness of the negative impacts of agricultural intensification and urbanization for human health, food quality, ecosystem resilience, and biodiversity conservation motivated the emergence of new approaches concerning home gardens. Societies began to question the potential of nearby green infrastructures to human wellbeing, food provisioning, and the conservation of traditional varieties, as well as providers of important services, such as ecological corridors for wild species and carbon sinks. In this context. and to foster adaptive and resilient social-ecological systems, our supported viewpoint intends to be more than an exhaustive set of perceptions, but a reflection of ideas about the important contribution of home gardens to sustainable development. We envision these humble spaces strengthening social and ecological components, by providing a set of diversified and intermingled goods and services for an increasingly urban population.


Subject(s)
Gardens , Plants, Medicinal , Humans , Gardening , Ecosystem , Biodiversity , Urbanization
7.
Foods ; 11(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35267278

ABSTRACT

The probability that fruit ingestion may protect human health is an intriguing vision and has been studied around the world. Therefore, fruits are universally promoted as healthy. Over the past few decades, the number of studies proposing a relationship between fruit intake and reduced risk of major chronic diseases has continued to grow. Fruits supply dietary fiber, and fiber intake is linked to a lower incidence of cardiovascular disease and obesity. Fruits also supply vitamins and minerals to the diet and are sources of phytochemicals that function as phytoestrogens, antioxidant and anti-inflammatory agents, and other protective mechanisms. So, this review aims to summarize recent knowledge and describe the most recent research regarding the health benefits of some selected red fruits.

8.
Molecules ; 26(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923843

ABSTRACT

The emergence of antibiotic-resistance in bacteria has limited the ability to treat bacterial infections, besides increasing their morbidity and mortality at the global scale. The need for alternative solutions to deal with this problem is urgent and has brought about a renewed interest in natural products as sources of potential antimicrobials. The wine industry is responsible for the production of vast amounts of waste and by-products, with associated environmental problems. These residues are rich in bioactive secondary metabolites, especially phenolic compounds. Some phenolics are bacteriostatic/bactericidal against several pathogenic bacteria and may have a synergistic action towards antibiotics, mitigating or reverting bacterial resistance to these drugs. Complex phenolic mixtures, such as those present in winemaking residues (pomace, skins, stalks, leaves, and especially seeds), are even more effective as antimicrobials and could be used in combined therapy, thereby contributing to management of the antibiotic resistance crisis. This review focuses on the potentialities of winemaking by-products, their extracts, and constituents as chemotherapeutic antibacterial agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Antioxidants/metabolism , Drug Resistance, Microbial , Phenols/metabolism
9.
Foods ; 10(1)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33419090

ABSTRACT

Polyphenols, as well as volatile compounds responsible for aromatic features, play a critical role in the quality of vegetables and medicinal, and aromatic plants (MAPs). The research conducted in recent years has shown that these plants contain biologically active compounds, mainly polyphenols, that relate to the prevention of inflammatory processes, neurodegenerative diseases, cancers, and cardiovascular disorders as well as to antimicrobial, antioxidant, and antiparasitic properties. Throughout the years, many researchers have deeply studied polyphenols and volatile compounds in medicinal and aromatic plants, particularly those associated with consumer's choices or with their beneficial properties. In this context, the purpose of this review is to provide an overview of the presence of volatile and nonvolatile compounds in some of the most economically relevant and consumed vegetables and medicinal and aromatic plants, with an emphasis on bioactive polyphenols, polyphenols as prebiotics, and, also, the most important factors that affect the contents and profiles of the volatile and nonvolatile compounds responsible for the aromatic features of vegetables and MAPs. Additionally, the new challenges for science in terms of improving polyphenol composition and intensifying volatile compounds responsible for the positive characteristics of vegetables and medicinal and aromatic plants are reported.

10.
Front Nutr ; 8: 773346, 2021.
Article in English | MEDLINE | ID: mdl-35281762

ABSTRACT

Multidrug-resistant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) has become the most recurrent global cause of skin and soft-tissue infections, belonging to the WHO priority pathogens list. Successful therapy remains challenging and entails the assessment of novel and successful antibiotics. In this study, mushrooms are considered a valuable and unique source of natural antimicrobial compounds. Therefore, this study aimed to evaluate the antimicrobial and antibiofilm properties of Boletus edulis (B. edulis) and Neoboletus luridiformis (N. luridiformis) aqueous and methanolic extracts against ESKAPE isolates from clinical wound infections. Disk diffusion and microdilution methods were used to assess the antimicrobial activity. Phytochemical characterization was achieved by analysis of total phenols, orthodiphenols content, and antioxidant activity as well as by high-performance liquid chromatography-diode array detector (HPLC-DAD). Human foreskin fibroblasts-1 (HFF-1) cell viability was performed by the MTT assay. Aqueous and methanolic extracts of B. edulis and N. luridiformis showed antimicrobial and antibiofilm properties against multidrug-resistant bacteria, although with different efficacy rates. The results showed that there is a convincing relation between the content of phenolic compounds, antioxidant activity, and antimicrobial activity suggesting that the presence of phenolic compounds may explain the biological effects. HPLC analysis revealed high levels of protocatechuic acid, homogentisic acid, pyrogallol, gallic acid, p-catechin, and dihydroxybenzoic acid in the aqueous extract of B. edulis, explaining the highest antimicrobial and antibiofilm properties. Importantly, the mushrooms extracts were non-cytotoxic at all the tested concentrations. Overall, the tested mushrooms extracts are good candidates to further explore its use in the prevention of wound infection, particularly by multidrug-resistant pathogens.

11.
J Sci Food Agric ; 101(2): 459-475, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-32648605

ABSTRACT

BACKGROUND: Various strategies are needed to mitigate the negative impact on or to increase fruit quality. The effect of spraying kaolin (K), Ascophyllum nodosum (An) and salicylic acid (SA), in trees with and without irrigation, on quality and sensorial attributes of hazelnut (Grada de Viseu cultivar) was investigated during two consecutive years (2016 and 2017) in a commercial orchard located in Moimenta da Beira, Portugal. RESULTS: The treatments affected positively the biometric parameters nut and kernel weight, length, width, thickness and volume as well as the vitamin E level, antioxidant activity and content of some individual phenolics, such as protocatechuic acid, gallocatechin, catechin and epicatechin. The levels of amino acids in hazelnut kernels decreased in all the assayed treatments, while the kernel colour and sensorial attributes were not affected by the treatments. Hazelnut physical properties (nut and kernels), chemical and phytochemical composition and antioxidant activities were positively related. CONCLUSIONS: The application of K, An and SA improved the hazelnut tree response to climate change, without compromising the hazelnut chemical and sensorial quality. Furthermore, due to the similar observations for the same treatments with and without irrigation, it can be stated that K, An and SA can be efficient and cost-effective tools to mitigate summer stress in rain-fed orchards. © 2020 Society of Chemical Industry.


Subject(s)
Ascophyllum/chemistry , Corylus/drug effects , Kaolin/pharmacology , Nuts/chemistry , Plant Extracts/pharmacology , Salicylic Acid/pharmacology , Adult , Agricultural Irrigation , Corylus/chemistry , Corylus/growth & development , Crop Production , Female , Humans , Male , Middle Aged , Nuts/drug effects , Nuts/growth & development , Phenols/chemistry , Portugal , Seaweed/chemistry , Taste
12.
Antioxidants (Basel) ; 9(12)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348687

ABSTRACT

Every year, large quantities of stems and pits are generated during sweet cherry processing, without any substantial use. Although stems are widely recognized by traditional medicine, detailed and feasible information about their bioactive composition or biological value is still scarce, as well as the characterization of kernels. Therefore, we conducted a study in which bioactivity potential of extracts from stems and kernels of four sweet cherry cultivars (Early Bigi (grown under net cover (C) and without net cover (NC)), Burlat, Lapins, and Van) were examined. The assays included antioxidant (by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic) acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ß-carotene-linoleic acid bleaching assays), and antibacterial activities against important Gram negative and Gram positive bacterial human isolates. Profile and individual phenolic composition of each extract were determined by High-performance liquid chromatography (HPLC) analysis. Extracts from stems of cv. Lapins and kernels of Early Bigi NC presented high levels of total phenolics, flavonoids, ortho-diphenols and saponins. Excepting for cv. Early Bigi NC, major phenolic compounds identified in stems and kernels were sakuranetin and catechin, respectively. In cv. Early Bigi NC the most abundant compounds were ellagic acid for stems and protocatechuic acid for kernels. In all extracts, antioxidant activities showed a positive correlation with the increments in phenolic compounds. Antimicrobial activity assays showed that only stem's extracts were capable of inhibiting the growth of Gram positive isolates. This new data is intended to provide new possibilities of valorization of these by-products and their valuable properties.

13.
J Food Sci Technol ; 57(11): 4265-4276, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33071348

ABSTRACT

A response surface methodology was used to study the conditions for a maximum recovery of phenolics from processing kiwi fruit residues. Ethanolic extracts were prepared with different conditions of pH (2, 5, 10), temperature (30, 50 and 70 ºC) and time (10, 20, 30 min). Total phenolics, total flavonoids content and antioxidant activities by 2,2-diphenyl-1-picrylhydrazyl scavenging capacity and ferric reducing antioxidant power were determined. Samples from optimal extraction condition were injected HPLC-DAD system to access the phenolic profile and content. The best extraction conditions were pH solvent of 2, 70 ºC of temperature and 20 min of extraction. Ten phenolics were identified: caffeic acid and its derivatives, chlorogenic acid and ferulic acid, (+)-catechin, (-)-epicatechin), rutin and quercitrin. These phenolics often reported as having important antioxidant, anti-inflammatory, antiaging and anticancer activities, turn this residues and excellent source of bioactive compounds to be used in agro-food, cosmetics or phytochemical industries.

14.
Food Chem ; 322: 126713, 2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32283370

ABSTRACT

Pre-harvest application of exogenous compounds has been employed in many crops, as a cultural practice, to promote their adaptation to a new climate-changing environment. Effect of foliar pre-harvest application of salicylic acid, glycine-betaine complex and seaweed extract (Ascophyllum nodosum) on the cherry quality from 'Staccato' cultivar was studied. Treatments significantly affected (p < 0.01) the fruit size, soluble solids content, pH, colour, polyphenols, vitamin C and antioxidant activity. Glycine-betaine and A. nodosum treated cherries presented higher dimensions, soluble solids content and pH and lower acidity. In addition, these cherries had a higher content of polyphenols and vitamin C and antioxidant capacity, but lower values of L*, C*ab and hue angle, meaning that both treatments can rise the fruit ripening process. Therefore, the pre-harvest application of glycine-betaine and A. nodosum can be a good alternative to promote the adaptation of sweet cherry tree to stressful environmental conditions, without compromising the fruit quality.


Subject(s)
Ascophyllum/chemistry , Betaine/pharmacology , Food Preservation/methods , Food Preservatives/pharmacology , Glycine/pharmacology , Plant Extracts/pharmacology , Prunus avium/chemistry , Seaweed/chemistry , Antioxidants/analysis , Ascorbic Acid/analysis , Color , Fruit/chemistry , Fruit/drug effects , Prunus avium/drug effects , Quality Control
15.
Phytochemistry ; 175: 112371, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32283438

ABSTRACT

During the last years halogenated compounds have drawn a lot of attention. Metabolites with one or more halogen atoms are often more active than their non-halogenated derivatives like indole-3-acetic acid (IAA) and 4-Cl-IAA. Within this work, bacterial flavin-dependent tryptophan halogenase genes were inserted into Brassica rapa ssp. pekinensis (Chinese cabbage) with the aim to produce novel halogenated indole compounds. It was investigated which tryptophan-derived indole metabolites, such as indole glucosinolates or potential degradation products can be synthesized by the transgenic root cultures. In vivo and in vitro activity of halogenases heterologously produced was shown and the production of chlorinated tryptophan in transgenic root lines was confirmed. Furthermore, chlorinated indole-3-acetonitrile (Cl-IAN) was detected. Other tryptophan-derived indole metabolites, such as IAA or indole glucosinolates were not found in the transgenic roots in a chlorinated form. The influence of altered growth conditions on the amount of produced chlorinated compounds was evaluated. We found an increase in Cl-IAN production at low temperatures (8 °C), but otherwise no significant changes were observed. Furthermore, we were able to regenerate the wild type and transgenic root cultures to adult plants, of which the latter still produced chlorinated metabolites. Therefore, we conclude that the genetic information had been stably integrated. The transgenic plants showed a slightly altered phenotype compared to plants grown from seeds since they also still expressed the rol genes. By this approach we were able to generate various stably transformed plant materials from which it was possible to isolate chlorinated tryptophan and Cl-IAN.


Subject(s)
Brassica rapa , Brassica , Glucosinolates , Indoles , Plant Roots , Plants, Genetically Modified
16.
J Food Biochem ; 43(7): e12887, 2019 07.
Article in English | MEDLINE | ID: mdl-31353720

ABSTRACT

Almonds have recognized health benefits, which are largely attributed to their chemical composition, including fatty acids, phenolics, vitamin E, and sucrose. This study was carried with the aim of providing information on the levels of the aforementioned bioactive compounds and antioxidant activities in six understudied Portuguese cultivars (Amendoão, Bonita, Casanova, Molar, Pegarinhos-Moncorvo, Pegarinhos-Murça and Refêgo), in comparison with two foreign cultivars (Ferragnès and Glorieta). A cultivar effect was observed for all the parameters evaluated, with some Portuguese cultivars comparing well and even favorably with the foreign ones. A multivariate analysis of the data allowed a clear discrimination of cultivars and that statistical tool could be used for authenticity purposes, especially for cultivars included in the Protected Designation of Origin "Amêndoa Douro." PRACTICAL APPLICATIONS: Almonds are among the most consumed nuts worldwide, with a considerable number of cultivars recorded around the world, although research has been neglecting the local cultivars. This work studies the chemical composition of several understudied cultivars and compares them to two widespread commercial ones. The results not only provide new information about these neglected cultivars, but also provide data for stakeholders to select more interesting cultivars with particular characteristics/or rich in compounds of interest.


Subject(s)
Antioxidants/chemistry , Fatty Acids/chemistry , Plant Extracts/chemistry , Prunus dulcis/chemistry , alpha-Tocopherol/chemistry , Nuts/chemistry , Portugal , Sucrose/analysis
17.
Antioxidants (Basel) ; 6(3)2017 Sep 20.
Article in English | MEDLINE | ID: mdl-28930147

ABSTRACT

The aim of the current study was to determine the profile and content of polyphenols present in Erica cinerea, an important plant species from Northern Portuguese flora and often reported as having anti-inflammatory, antioxidant, and anti-radical activity. The analysis of polyphenols was performed by HPLC-DAD/UV-Vis, and the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) method was used to evaluate its radical scavenging activity. HPLC analysis showed that both plants presented a great diversity of compounds, with 33% flavones, 28% flavanols, and 26% hydroxycinnamic acids. The antiradical activity was dose-dependent, and the IC50 values were 0.251 mg mL-1. Based on our study, E. cinerea presented interesting bioactive compounds and it can be used to extract and purify bioactive polyphenols to be used in pharmaceutical or agro-food industries.

18.
Int J Anal Chem ; 2017: 5125329, 2017.
Article in English | MEDLINE | ID: mdl-28694825

ABSTRACT

Glucosinolates are a class of sulphur-containing plant compounds with diverse biological properties. They have been found exclusively in the Brassicaceae family plants and studied exhaustively in biosynthetic and application perspectives. The aim of this current study is to present a simple and updated method to quantify indole glucosinolate content in hairy root cultures of Chinese cabbage by HPLC-DAD-UV/Vis. Method validation controls were performed and recovery experiments were assayed. The data was statically treated and compared with published works. The current method allowed a feasible identification of indole glucosinolates and it was possible to identify accurately three indole glucosinolate compounds (glucobrassicin, 4-methoxyglucobrassicin, and 1-methoxyglucobrassicin) in roots of Chinese cabbage. The method demonstrated a good linearity (R2 > 0.99), a good precision, and selectivity sensitivity. In conclusion, this protocol provides an accessible method to extract and quantify glucosinolates in plant samples. Thus, based on our results, the method is valid and can be extended to other plant or food matrices.

19.
Acta Biochim Pol ; 64(2): 265-271, 2017.
Article in English | MEDLINE | ID: mdl-28411365

ABSTRACT

The aim of this study was to evaluate the bioactivity of flavonoids extracted from sweet-cherry stems which are often used by a traditional system of medicine to treat gastro-intestinal and urinary tract infections but lacking any consistent scientific evidence; moreover the information about the class of phenolics, their content and the potential bioactivity of such material is very scarce. Thus, in this context, we have set a research study in which we evaluated the profile and content of phenolics extracted from sweet-cherry stems through a conventional (70ºC and 20 min) and ultrasound assisted extraction (40 kHz, room temperature and 20 min). The extracts were phytochemically characterized by using an HPLC-DAD-UV/VIS system and assayed by an in vitro minimum inhibitory concentration (MIC) bioassay against Escherichia coli isolates. Simultaneously, the total antioxidant activities were measured using the 2,2'-azinobis-3-ethylbenzothiazoline-6-sulphonate (ABTS•+) radical cation assay. Our results indicate that sweet-cherry stems have a high content of sakuranetin, ferulic acid, p-coumaric acid, p-coumaroylquinic acid, chlorogenic acid and its isomer neochlorogenic acid. Their average levels were highly affected by the extraction method used (p<0.001). The same trend was observed for total antioxidant activity and MIC values. The extracts produced with ultrasounds presented both, a higher total antioxidant activity and a lower minimum inhibitory concentration. Statistical analyses of our results showed a significant correlation (p<0.01) of total antioxidant activity and minimum inhibitory concentration with phenolics present in the extracts studied. Thus, we can conclude that cherry stems can be further exploited to purify compounds and produce coproducts with enhanced biologically added value for pharmaceutical industry.


Subject(s)
Antioxidants/pharmacology , Escherichia coli Infections/drug therapy , Escherichia coli/drug effects , Plant Extracts/pharmacology , Prunus avium/chemistry , Antioxidants/chemistry , Escherichia coli/pathogenicity , Escherichia coli Infections/microbiology , Flavonoids/chemistry , Glycosylation , Humans , Microbial Sensitivity Tests , Phenols/chemistry , Plant Extracts/chemistry , Plant Stems/chemistry
20.
Waste Manag ; 59: 37-47, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28340969

ABSTRACT

The use of spent coffee grounds (SCG) in composting for organic farming is a viable way of valorising these agro-industrial residues. In the present study, four treatments with different amounts of spent coffee grounds (SCG) were established, namely, C0 (Control), C10, C20 and C40, containing 0, 10, 20 and 40% of SCG (DM), respectively; and their effects on the composting process and the end-product quality characteristics were evaluated. The mixtures were completed with Acacia dealbata L. shoots and wheat straw. At different time intervals during composting, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions were measured and selected physicochemical characteristics of the composts were evaluated. During the composting process, all treatments showed a substantial decrease in total phenolics and total tannins, and an important increase in gallic acid. Emissions of greenhouse gases were very low and no significant difference between the treatments was registered. The results indicated that SCG may be successfully composted in all proportions. However C40, was the treatment which combined better conditions of composting, lower GHG emissions and better quality of end product.


Subject(s)
Carbon Dioxide , Coffee/chemistry , Methane , Nitrous Oxide , Soil , Acacia/chemistry , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Coffee/metabolism , Fertilizers , Gallic Acid/metabolism , Methane/analysis , Methane/metabolism , Nitrous Oxide/analysis , Nitrous Oxide/metabolism , Plant Stems/chemistry , Plant Stems/metabolism , Soil/chemistry , Temperature , Triticum/chemistry , Triticum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...