Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sensors (Basel) ; 23(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37299795

ABSTRACT

This work presents a multi-parameter optical fiber monitoring solution applied to an underground power distribution network. The monitoring system demonstrated herein uses Fiber Bragg Grating (FBG) sensors to measure multiple parameters, such as the distributed temperature of the power cable, external temperature and current of the transformers, liquid level, and intrusion in the underground manholes. To monitor partial discharges of cable connections, we used sensors that detect radio frequency signals. The system was characterized in the laboratory and tested in underground distribution networks. We present here the technical details of the laboratory characterization, system installation, and the results of 6 months of network monitoring. The data obtained for temperature sensors in the field tests show a thermal behavior depending on the day/night cycle and the season. The temperature levels measured on the conductors indicated that in high-temperature periods, the maximum current specified for the conductor must be reduced, according to the applied Brazilian standards. The other sensors detected other important events in the distribution network. All the sensors demonstrated their functionality and robustness in the distribution network, and the monitored data will allow the electric power system to have a safe operation, with optimized capacity and operating within tolerated electrical and thermal limits.


Subject(s)
Body Fluids , Humans , Brazil , Electric Power Supplies , Electricity , Fever
2.
Sensors (Basel) ; 21(2)2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33466683

ABSTRACT

In this work, we present the design, laboratory tests, and the field trial results of a power-over-fiber (PoF) low power instrument transformer (LPIT) for voltage and current measurements in the medium voltage distribution networks. The new proposed design of this power-over-fiber LPIT aims to overcome the drawbacks presented by the previous technologies, such as the continuous operation (measuring and data transmission) for a wide current range conducted in the medium voltage transmission lines, damage due to lightning strikes, accuracy dependency on vibration, position and temperatures. The LPIT attends the accuracy criteria of IEC 61869-10 and IEC 61869-11 in terms of current and voltage accuracy and it attends the practical criteria adopted by Utilities companies including voltage measurements without removing the coating of the covered conductors. The PoF based LPIT was developed to be applied at 11.9 kV, 13.8 kV, and 23.0 kV phase-to-phase nominal voltages, and in two current ranges 1.25-30 A and 37.5-900 A. The digital data transmission of current, voltage, and temperature from the sensing unit to the processing unit uses a special synchronism technique and it is performed by two 62.5 µm multimode fibers in 850 nm. The optical powering in 976 nm is also performed by one 62.5 µm multimode fiber from the processing unit to the sensor unit. We presented all details of the sensor design and its laboratory characterization in terms of accuracy and temperature correction. We also presented the results of field tests of the sensor made in two different conditions: in a standard distribution network and an experimental hybrid fiber/power distribution network. We believe that these studies aim to incorporate optical fiber and devices, digital technologies, communications systems in electrical systems driving their evolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...