Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Inorg Chem ; 10(4): 319-32, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15843985

ABSTRACT

A novel heterobinuclear mixed valence complex [Fe(III)Cu(II)(BPBPMP)(OAc)(2)]ClO(4), 1, with the unsymmetrical N(5)O(2) donor ligand 2-bis[{(2-pyridylmethyl)aminomethyl}-6-{(2-hydroxybenzyl)(2-pyridylmethyl)}aminomethyl]-4-methylphenol (H(2)BPBPMP) has been synthesized and characterized. A combination of data from mass spectrometry, potentiometric titrations, X-ray absorption and electron paramagnetic resonance spectroscopy, as well as kinetics measurements indicates that in ethanol/water solutions an [Fe(III)-(mu)OH-Cu(II)OH(2)](+) species is generated which is the likely catalyst for 2,4-bis(dinitrophenyl)phosphate and DNA hydrolysis. Insofar as the data are consistent with the presence of an Fe(III)-bound hydroxide acting as a nucleophile during catalysis, 1 presents a suitable mimic for the hydrolytic enzyme purple acid phosphatase. Notably, 1 is significantly more reactive than its isostructural homologues with different metal composition (Fe(III)M(II), where M(II) is Zn(II), Mn(II), Ni(II), or Fe(II)). Of particular interest is the observation that cleavage of double-stranded plasmid DNA occurs even at very low concentrations of 1 (2.5 microM), under physiological conditions (optimum pH of 7.0), with a rate enhancement of 2.7 x 10(7) over the uncatalyzed reaction. Thus, 1 is one of the most effective model complexes to date, mimicking the function of nucleases.


Subject(s)
Acid Phosphatase/chemistry , Deoxyribonucleases/chemistry , Glycoproteins/chemistry , Models, Molecular , Catalysis , Copper/chemistry , Iron/chemistry , Organometallic Compounds/chemistry
2.
Biotechnol Prog ; 20(5): 1588-92, 2004.
Article in English | MEDLINE | ID: mdl-15458349

ABSTRACT

Two biological approaches for decolorization of azo sulfonated dyes have been compared: reductive decolorization with the ascomycete yeast Issatchenkia occidentalis and enzymatic oxidative decolorization with Trametes villosa laccase alone or in the presence of the mediator 1-hydroxybenzotriazole. The redox potential difference between the biological cofactor involved in the reductive activity of growing cells and the azo dye is a reliable indication for the decolorization ability of the biocatalyst. A linear relationship exists between the redox potential of the azo dyes and the decolorization efficiency of enzyme, enzyme/mediator, and yeast. The less positive the anodic peak of the dye, the more easily it is degraded oxidatively with laccase. The more positive the cathodic peak of the dye, the more rapidly the dye molecule is reduced with yeast.


Subject(s)
Algorithms , Azo Compounds/chemistry , Azo Compounds/metabolism , Coloring Agents/chemistry , Coloring Agents/metabolism , Electrochemistry/methods , Laccase/chemistry , Saccharomycetales/metabolism , Basidiomycota/enzymology , Biodegradation, Environmental , Color , Oxidation-Reduction , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...