Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters










Publication year range
2.
Mater Sci Eng C Mater Biol Appl ; 72: 34-41, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28024595

ABSTRACT

Hybrid mesoporous silica SBA-15, with surface incorporated cross-linked long hydrophobic organic bridges was synthesized using stepwise synthesis. The synthesized materials were characterized by elemental analysis, infrared spectroscopy, nuclear magnetic resonance spectroscopy, nitrogen adsorption, X-rays diffraction, thermogravimetry and scanning and transmission electron microscopy. The functionalized material showed highly ordered mesoporous network with a surface area of 629.0m2g-1. The incorporation of long hydrophobic amine chains on silica surface resulted in high drug loading capacity (21% Mass/Mass) and prolonged release of ibuprofen up till 75.5h. The preliminary investigations suggests that the synthesized materials could be proposed as controlled release devices to prolong the therapeutic effect of short life drugs such as ibuprofen to increase its efficacy and to reduce frequent dosage.


Subject(s)
Amines/chemistry , Drug Carriers/chemistry , Ibuprofen/chemistry , Silicon Dioxide/chemistry , Adsorption , Drug Liberation , Hydrophobic and Hydrophilic Interactions , Ibuprofen/metabolism , Magnetic Resonance Spectroscopy , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Porosity , Scattering, Small Angle , Thermogravimetry , X-Ray Diffraction
3.
An Acad Bras Cienc ; 88(3): 1212-20, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27580360

ABSTRACT

The adsorption of Violet Remazol 5R (VR 5) on wood sawdust modified with succinic anhydride (SSA) as a function of contact time, pH, and initial dye concentrations was investigated using a batch technique under ambient conditions. The SSA obtained was confirmed by IR spectroscopy, thermogravimetry and 13C NMR, and degrees of substitution (DS) were calculated. A study on the effect of the pH on the adsorption of VR 5 showed that the optimum pH was 2.0. The interactions were assayed with respect to the pseudo-first-order and pseudo-second-order kinetic models, and were found to follow closely the pseudo-second-order. The isotherm was adjusted to the Langmuir, the Freundlich and the Temkin sorption models. SSA is a promising material for the removal of dye textile from aqueous solutions, and under conditions studied the removal percentage achieved was 51.7%.

4.
Mater Sci Eng C Mater Biol Appl ; 59: 970-979, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26652455

ABSTRACT

Mesoporous silica SBA-15 was synthesized and functionalized with bridged polysilsesquioxane monomers obtained by the reaction of 3-aminopropyltriethoxy silane with glycidyl methacrylate in 2:1 ratio. The synthesized mesoporous silica materials were characterized by elemental analysis, infrared spectroscopy, nuclear magnetic resonance spectroscopy, nitrogen adsorption, X-ray diffraction, thermogravimetry and scanning electron microscopy. The nuclear magnetic resonance in the solid state is in agreement with the sequence of carbon distributed in the attached organic chains, as expected for organically functionalized mesoporous silica. After functionalization with organic bridges the BET surface area was reduced from 1311.80 to 494.2m(2)g(-1) and pore volume was reduced from 1.98 to 0.89cm(3)g(-1), when compared to original precursor silica. Modification of the silica surface with organic bridges resulted in high loading capacity and controlled release of ibuprofen and mesalamine in biological fluids. The Korsmeyer-Peppas model better fits the release data indicating Fickian diffusion and zero order kinetics for synthesized mesoporous silica. The drug release rate from the modified silica was slow in simulated gastric fluid, (pH1.2) where less than 10% of mesalamine and ibuprofen were released in initial 8h, while comparatively high release rates were observed in simulated intestinal (pH6.8) and simulated body fluids (pH7.2). The preferential release of mesalamine at intestinal pH suggests that the modified silica could be a simple, efficient, inexpensive and convenient carrier for colon targeted drugs, such a mesalamine and also as a controlled drug release system.


Subject(s)
Delayed-Action Preparations/chemistry , Epoxy Compounds/chemistry , Ibuprofen/pharmacokinetics , Mesalamine/pharmacokinetics , Methacrylates/chemistry , Silicon Dioxide/chemistry , Ibuprofen/chemistry , Mesalamine/chemistry , Models, Biological
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 151: 156-63, 2015 Dec 05.
Article in English | MEDLINE | ID: mdl-26135536

ABSTRACT

Silica nanoparticles of 7 nm diameter were modified with (3-aminopropyl) triethoxysilane (APTES) and characterized by CP-MAS (13)C and (29)Si NMR, FTIR, zeta potential measurements, and thermogravimetry. The particles were shown to sorb successfully divalent lead and cadmium ions from aqueous solution. Lead complexation with these silica nanoparticles was clearly confirmed by EXAFS (Extended X-ray Absorption Fine Structure) with synchrotron light measurements. Predicted Pb-N and Pb-C distances obtained from quantum-chemical calculations are in very good agreement with the EXAFS determinations. The calculations also support the higher APTES affinity for Pb(2+) compared to Cd(2+).

6.
Colloids Surf B Biointerfaces ; 119: 82-9, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24819430

ABSTRACT

The mesoporous SBA-15 silica with uniform hexagonal pore, narrow pore size distribution and tuneable pore diameter was organofunctionalized with glutaraldehyde-bridged silylating agent. The precursor and its derivative silicas were ibuprofen-loaded for controlled delivery in simulated biological fluids. The synthesized silicas were characterized by elemental analysis, infrared spectroscopy, (13)C and (29)Si solid state NMR spectroscopy, nitrogen adsorption, X-ray diffractometry, thermogravimetry and scanning electron microscopy. Surface functionalization with amine containing bridged hydrophobic structure resulted in significantly decreased surface area from 802.4 to 63.0 m(2) g(-1) and pore diameter 8.0-6.0 nm, which ultimately increased the drug-loading capacity from 18.0% up to 28.3% and a very slow release rate of ibuprofen over the period of 72.5h. The in vitro drug release demonstrated that SBA-15 presented the fastest release from 25% to 27% and SBA-15GA gave near 10% of drug release in all fluids during 72.5 h. The Korsmeyer-Peppas model better fits the release data with the Fickian diffusion mechanism and zero order kinetics for synthesized mesoporous silicas. Both pore sizes and hydrophobicity influenced the rate of the release process, indicating that the chemically modified silica can be suggested to design formulation of slow and constant release over a defined period, to avoid repeated administration.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Cross-Linking Reagents/chemistry , Delayed-Action Preparations/chemical synthesis , Glutaral/chemistry , Ibuprofen/chemistry , Silicon Dioxide/chemistry , Diffusion , Drug Compounding , Hydrophobic and Hydrophilic Interactions , Kinetics , Particle Size , Porosity , Propylamines , Silanes/chemistry , Surface Properties
7.
Carbohydr Polym ; 102: 38-46, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24507253

ABSTRACT

Chitosan was chemically modified through a sequence of four reactions with immobilized 2-aminomethylpyridine at the final stage, after prior protection of amino group with benzaldehyde. The characterized biopolymers containing free amino and hydroxyl active centers on the biopolymeric structure and pyridinic nitrogen on pendant chains showed combined hydrophobic properties that can potentially favor interactions. Reactive Yellow GR and Blue RN dyes gave the maximum sorption capacities of 2.13 and 1.61 mmol g(-1), which were performed as functions of contact time, concentration and dye structure. However, biopolymer/dye interactions are governed by effective hydrogen bond and van der Waals forces for such structural adjustments. The data obtained from the concentration isotherm were applied to non-linear regressions of the Langmuir, the Freundlich and the Sips models, with the best fit to the latter model. The kinetic data was fitted to non-linear regression of pseudo-second-order, indicating that the sorption phenomena are most likely to be controlled by chemisorption process.


Subject(s)
Chitosan/chemistry , Coloring Agents/isolation & purification , Pyridines/chemistry , Textiles , Biopolymers/chemistry , Kinetics , Magnetic Resonance Spectroscopy , Spectrophotometry, Infrared , Thermogravimetry , X-Ray Diffraction
8.
Materials (Basel) ; 7(12): 7907-7924, 2014 Dec 09.
Article in English | MEDLINE | ID: mdl-28788283

ABSTRACT

Crystalline cellulose chemically modified through a reaction with sodium trimetaphosphate (STMP) in an acidic or basic condition yielded Cel-P4 and Cel-P10. These phosphated solids were characterized by elemental analysis, X-ray diffraction (XRD), infrared (IR) spectroscopy, scanning electron microscopy (SEM), nuclear magnetic resonance (NMR) at the solid state for phosphorus nucleus and dispersive X-ray energy. The elemental results demonstrated that the phosphorylation reaction was more efficient in the basic medium, as supported by the amount of phosphorous content. The synthesized biomaterials decreased in crystallinity in comparison to the precursor cellulose, with an increase in roughness and present two distinct phosphorus environments in the formed structure. The phosphated cellulose in an alkaline condition was applied to sorb the drug ranitidine. This process was applied in varying pH, time, temperature and concentration. The best sorption kinetic model to fit the experimental data was the pseudo-second-order with a coefficient correlation of 0.8976, and the Langmuir isotherm model was the most adjusted to the variation in concentration. The efficient drug sorption has a low dependence on temperature, with maximum values of 85.0, 82.0 mg and 85.7 mg·g-1 for Cel-P10 at 298, 308 and 318 K, respectively. The best sorption occurred at pH = 6 with a saturation time of 210 min.

9.
J Environ Manage ; 133: 135-43, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24374243

ABSTRACT

Ordered mesoporous SBA-15 type silica was synthesized by sol gel polymerization and reacted with 3-aminopropyltriethoxysilane (AP) or triethylenetetramine (TE), to attach pendant chains or bridging molecules, with basic centres. The materials were characterized by elemental analysis, infrared spectroscopy, and nuclear magnetic resonance in the solid state, X-ray diffractometry, scanning and transmission electron microscopy. The nitrogen sorption/desorption data for SBA-15 and the organofunctionalized SBA-15AP and SBA-15TE silicas resulted in IV type isotherms with hysteresis loops of the H1 type, surface areas of 800; 213 and 457 m(2) g(-1) and average pore diameters of 8.0; 3.2 and 6.8 nm, respectively. The ordered structural features of the mesoporous silica remained preserved after post-functionalization with pendant and bridged organic chains. Sorption data for organofunctionalized silicas gave highly selective sorption capacities for anionic water soluble Reactive Blue dye, with 0.064 and 0.072 mmol g(-1). Negligible sorption was observed with the unmodified mesoporous silica. The results suggest that organofunctionalized silica can be a simple, efficient, inexpensive and suitable method for the effective and selective removal of anionic organic dye pollutants from aqueous solutions.


Subject(s)
Amines/chemistry , Coloring Agents/isolation & purification , Imines/chemistry , Silicon Dioxide/chemistry , Water/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Solutions , Spectrophotometry, Infrared , X-Ray Diffraction
10.
Int J Biol Macromol ; 52: 107-15, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23010457

ABSTRACT

The biopolymer chitosan was chemically modified in two sequences of reactions: (i) immobilization of methyl acrylate followed by cysteamine and (ii) the sequence of immobilization reactions involving ethylene sulfide, methyl acrylate and finally cysteamine. In both cases the pendant chains have attached nitrogen, oxygen and sulfur basic centers. The corresponding structures were characterized through elemental analysis, infrared spectroscopy, nuclear magnetic resonance in the solid state for carbon, thermogravimetry and scanning electron microscopy. The newly synthesized biopolymers have abilities to immobilize and controllably release the non-steroidal drug ibuprofen. The ibuprofen-loaded biomaterials as tablets or as films crosslinked with glutaraldehyde revealed that drug release is pH sensitive. The chemically modified chitosan may allow reduction of drug release in stomach fluids, since the functional groups cause a decrease in swelling rate at pH 1.2, opposite to the behavior that occurs at pH 7.4, that of nutritional fluid, where an increase of the rate of swelling occurs. In such conditions the negatively charge ibuprofen is electrostatically repelled by negative chitosan derivative surfaces.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Chitosan/chemistry , Ibuprofen/chemistry , Membranes, Artificial , Delayed-Action Preparations/chemistry , Gastric Juice/chemistry , Humans , Hydrogen-Ion Concentration
11.
Photochem Photobiol Sci ; 11(6): 1032-40, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22421904

ABSTRACT

The knowledge of photochemical kinetics in colloidal systems is important in understanding environmental photochemistry on dispersed solid surfaces. As model materials for the chemically sorbed organic compounds present in natural environments, modified silica nanoparticles (NPs) were obtained here by condensation of the silanol groups of fumed silica nanoparticles with 4-methoxybenzyl alcohol. These particles were characterized by different techniques. To evaluate their toxicity, the inhibition of the natural luminescence emission of the marine bacterium Vibrio fischeri in suspensions of the particles was measured. Laser flash-photolysis experiments (λ(exc) = 266 nm) performed with NP suspensions in acetonitrile-aqueous phosphate buffer mixtures showed the formation of the lowest triplet excited state of the chemisorbed organic groups (λ(max) = 390 nm). DFT calculations of the absorption spectrum of this radical support the assignment. From the calculated triplet energy, a thermodynamically favorable energy transfer from these triplet states to oxygen to yield singlet molecular oxygen is predicted. A value of 0.09 was measured for the quantum yield of singlet molecular oxygen generation by air-saturated suspensions of the nanoparticles in the mixture of solvents acetonitrile-aqueous phosphate buffer. The quantum yield of singlet molecular oxygen generation by the free 4-methoxybenzyl alcohol in the same solvent is 0.31.

12.
Colloids Surf B Biointerfaces ; 87(1): 88-95, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21652182

ABSTRACT

The biopolymer chitosan was chemically modified with dithiocarbamate, characterized by elemental analysis, IR, (13)C NMR and TG, and applied for lead, copper and cadmium removal. Based on sulfur elemental analysis an amount of 2.66 mmol g(-1) of pendant chain was incorporated in the original biopolymer, as also demonstrated through the appearance of a signal at 201 ppm in the (13)C NMR in the solid state. The TG curve demonstrated that the final product is more stable than the precursor chitosan. The sorption capacity of modified biopolymer was determined through a batchwise methodology, with maximum capacities of 2.24; 1.14 and 0.84 mmol g(-1) for divalent lead, copper and cadmium from aqueous solution, respectively. The highest sorption capacity for lead reflects the soft cation/sulfur interaction. The experimental data were adjusted to the Langmuir, the Freundlich and the Temkin sorption isotherm models using both linear and nonlinear regression analysis.


Subject(s)
Chitosan/analogs & derivatives , Chitosan/chemistry , Environmental Pollutants/isolation & purification , Environmental Restoration and Remediation , Cations , Elements , Lead/isolation & purification , Magnetic Resonance Spectroscopy , Spectrophotometry, Infrared , Temperature , Thermogravimetry , X-Ray Diffraction
13.
J Hazard Mater ; 186(1): 675-82, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21146923

ABSTRACT

The objective of this study is to examine the adsorption behavior of Sumifix Brilliant Orange 3R textile dye from aqueous solution on smectite sample, an abundant Amazon clay. The original smectite clay mineral has been collected from Amazon region, Brazil. The compound 2-aminomethylpyridine was anchored onto smectite surface by heterogeneous route. The ability of these materials to remove the Sumifix Brilliant Orange 3R textile dye from aqueous solution was followed by a series of adsorption isotherms, using a batchwise process. The maximum number of moles adsorbed was determined to be 1.26 and 2.07 mmol g(-1) for natural and modified clay samples, respectively. The energetic effects caused by dye cations adsorption were determined through calorimetric titrations. Thermodynamics indicated the existence of favorable conditions for such dye-nitrogen interactions.


Subject(s)
Coloring Agents/isolation & purification , Silicates/chemistry , Adsorption , Coloring Agents/analysis , Coloring Agents/chemistry , Hydrogen-Ion Concentration , Kinetics , Microscopy, Electron, Scanning , Thermodynamics , Water
14.
Photochem Photobiol ; 86(6): 1208-14, 2010.
Article in English | MEDLINE | ID: mdl-21039572

ABSTRACT

Functionalized silica nanoparticles (NP) were obtained by esterification of the silanol groups of fumed silica nanoparticles with benzyl alcohol. These particles were characterized by Fourier transform infrared spectroscopy, (13)C and (29)Si NMR spectroscopy, thermogravimetry, total organic carbon, Brunauer-Emmett-Teller analysis, UV-visible spectroscopy, and transmission electron microscopy. NP suspensions in water/acetonitrile mixtures were used as quenchers of benzophenone (BP) phosphorescence in time-resolved experiments at the excitation wavelength of 266 nm. The phosphorescence signals obtained in the presence of the nanoparticles were fitted to biexponential decays. Both decays were accelerated in the presence of increasing amounts of NP. A model, including the reversible adsorption of BP on the NP, which was supported by computer simulations accounts for the observed results. Laser flash-photolysis experiments with excitation at 266 nm of NP suspensions in water/acetonitrile in the presence of BP generated benzyl radicals that were attached to the silica surface. These radicals were detected at their absorption maxima (320 nm) by transient optical techniques.

15.
Dalton Trans ; 39(42): 10217-27, 2010 Nov 14.
Article in English | MEDLINE | ID: mdl-20922219

ABSTRACT

Inorganic-organic cobalt phyllosilicate hybrids were synthesized by the sol-gel procedure under mild non-hydrothermal conditions with a silicon precursor, formed through individual reactions between the silane 3-glycidoxypropyltriethoxysilane and the aminoalcohols ethanol- or diethanolamine. These procedures generated talc-like phyllosilicates containing pendant organic chains with nitrogen and oxygen basic centres located in the interlamellar region. For organofunctionalized phyllosilicates the lamellar structure obtained through the sol-gel method was confirmed by X-ray powder diffraction, while elemental analysis indicated that the densities of the organic groups attached to the new matrices were 3.31 ± 0.05 and 3.08 ± 0.07 mmol g(-1) for hybrids functionalized with ethanol- and diethanolamines, respectively. Infrared spectroscopy and nuclear magnetic resonance in the solid state for (13)C and (29)Si showed that the organic groups are indeed covalently bonded to the inorganic structures and the process of functionalization did not affect the original structures of the silylating agents employed. The thermally stable hybrids presented well-formed particles with a homogeneous distribution of cobalt and nitrogen atoms. Their abilities for copper removal from aqueous solutions gave maximum capacities of sorption of 2.01 ± 0.11 and 2.55 ± 0.15 mmol g(-1) for phyllosilicates containing ethanol- and diethanolamine groups, respectively. For lead sorption the values of 2.59 ± 0.11 and 2.43 ± 0.12 mmol g(-1) were found for this same sequence. These sorption data were adjusted to the non-linear regression of the Langmuir equation. Energetic features related to the interactions between the cations and the pendant basic centres were determined through calorimetric titrations. The acid-basic interactions reflect the spontaneity of the reactions, which are also enthalpically and entropically favourable for these chelating processes at the solid-liquid interface.


Subject(s)
Amino Alcohols/chemistry , Cobalt/chemistry , Copper/chemistry , Lead/chemistry , Silicates/chemistry , Calorimetry , Silanes/chemistry , Spectrum Analysis , Thermodynamics , Thermogravimetry
16.
Carbohydr Res ; 345(13): 1914-21, 2010 Sep 03.
Article in English | MEDLINE | ID: mdl-20673881

ABSTRACT

A phthalylated ion-exchange biopolymer was obtained by adding cellulose to molten phthalic anhydride in a quasi solvent-free procedure. Through this route 2.99+/-0.07 mmolg(-1) of pendant groups containing ester and carboxylic acid moieties were incorporated into the polymeric structure that was characterized by elemental analysis, solid-state carbon nuclear magnetic resonance (CP/MAS), infrared spectroscopy, X-ray diffraction, and thermogravimetry. The chemically modified polysaccharide is able to exchange cations from aqueous solution as demonstrated by batchwise methodology. The data were adjusted to a modified Langmuir equation to give 2.43+/-0.12 and 2.26+/-0.11 mmolg(-1) for divalent cobalt and nickel cations, respectively. The net thermal effects obtained from calorimetric titration measurements were also adjusted to a modified Langmuir equation, and the enthalpy of the interaction was calculated to give endothermic values of 2.11+/-0.28 and 2.50+/-0.31kJmol(-1) for these cations, respectively. The spontaneity of this ion-exchange process is reflected in negative Gibbs energy and with a contribution of positive entropic values. This set of thermodynamic data at the solid-liquid interface suggests a favorable ion-exchange process for this anchored biopolymer for cation exchange from the environment.


Subject(s)
Cellulose/chemistry , Ion Exchange , Phthalic Acids/chemistry , Calorimetry , Thermodynamics , X-Ray Diffraction
17.
J Hazard Mater ; 183(1-3): 81-6, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20674169

ABSTRACT

The synthetic imogolite sample was used for organofunctionalization process with 2-mercaptothiazoline (MTZ). The compound 2-mercaptothiazoline was anchored onto imogolite surface by heterogeneous route. Due to the increment of basic centers attached to the pendant chains the dye adsorption capability of the final chelating material, was found to be higher than is precursor. The ability of these materials to remove methylene blue from aqueous solution was followed by a series of adsorption isotherms at room temperature and pH 4.0. The maximum number of moles adsorbed was determined to be 40.32×10(-2) and 65.13×10(-2) mmol g(-1) for IMO and IMO(MTZ), respectively. The energetic effects caused by dye cations adsorption were determined through calorimetric titrations. Thermodynamics indicated the existence of favorable conditions for such methylene blue-nitrogen and sulfur interactions.


Subject(s)
Methylene Blue/isolation & purification , Thiazolidines/chemistry , Water Pollutants, Chemical/isolation & purification , Adsorption , Calorimetry , Chelating Agents , Coloring Agents , Surface Properties , Thermodynamics
18.
J Hazard Mater ; 181(1-3): 366-74, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20554108

ABSTRACT

The octosilicate Na-RUB-18 has the ability to exchange its original sodium with cetyltrimethylammonium cations. This procedure leads to interlayer space expansion, with the aim of obtaining inorganic-organic nanostructured hybrids by chemical modification reactions. The silylating agent 3-trimethoxysilylpropylurea was attached to the inorganic layer using heterogeneous methodology. The new organofunctionalized material was characterized by elemental analysis, X-ray diffraction, (13)C and (29)Si nuclear magnetic resonances in the solid state, infrared spectroscopy, thermogravimetry and scanning electron microscopy. The amount of silylating agent immobilized on surface was 2.03 mmol g(-1), with a basal distance of 2.43 nm. Nuclear magnetic resonance of (13)C and (29)Si nuclei evidenced covalent bond formation between organosilyl and silanol groups at the surface. The new synthesized nanostructured layered material was able to remove the textile dye Reactive Black 5 from aqueous solution, followed through a batchwise process. The effects of stirring time, adsorbent dosage and pH on the adsorption capacity demonstrated that 150 min is enough to reach equilibrium at 298+/-1 K at pH 3.0. Based on error function values the data were best fitted to fractional-order kinetic models and compared to pseudo-first-order, pseudo-second-order and chemisorption kinetic models. The equilibrium data were better fitted to the Sips isotherm models.


Subject(s)
Coloring Agents/isolation & purification , Industrial Waste/prevention & control , Silicates/chemistry , Textiles , Kinetics , Surface Properties
19.
J Hazard Mater ; 180(1-3): 683-92, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20478656

ABSTRACT

The compound N-[3-(trimethoxysilyl)propyl]diethylenetriamine (MPDET) was anchored onto Amazon kaolinite surface (KLT) by heterogeneous route. The modified and natural kaolinite clay samples were characterized by transmission electron microscopy (TEM), scanning electron microscopic (SEM), N(2) adsorption, powder X-ray diffraction, thermal analysis, ion exchange capacities, and nuclear magnetic nuclei of (29)Si and (13)C. The well-defined peaks obtained in the (13)C NMR spectrum in the 5.0-62.1 ppm region confirmed the attachment of organic functional groups as pendant chains bonded into the porous clay. The adsorption of uranyl on natural (KLT) and modified (KLT(MPDET)) kaolinite clays was investigated as a function of the solution pH, metal concentration, temperature, and ionic strength. The ability of these materials to remove U(VI) from aqueous solution was followed by a series of adsorption isotherms adjusted to a Sips equation at room temperature and pH 4.0. The maximum number of moles adsorbed was determined to be 8.37 x 10(-3) and 13.87 x 10(-3) mmol g(-1) for KLT and KLT(MPDET) at 298 K, respectively. The energetic effects (Delta(int)H, Delta(int)G, and Delta(int)S) caused by metal cations adsorption were determined through calorimetric titrations.


Subject(s)
Kaolin/chemistry , Polyamines/chemistry , Thermodynamics , Adsorption , Cations , Magnetic Resonance Spectroscopy , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , X-Ray Diffraction
20.
J Colloid Interface Sci ; 346(1): 178-87, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20307889

ABSTRACT

The original sepiolite clay mineral has been collected from Amazon region, Brazil. The compound 2-aminomethylpyridine (AMP) was anchored onto Amazon sepiolite surface by heterogeneous route. The natural (SPT) and modified (SPT(AMP)) sepiolite samples were characterized by elemental analysis, SEM, N(2) adsorption, and nuclear magnetic nuclei of (29)Si and (13)C. The well-defined peaks obtained in the (13)C NMR spectrum in the 0-160 ppm region confirmed the attachment of organic functional groups as pendant chains bonded into the porous clay. The ability of these materials to remove As(V) from aqueous solution was followed by a series of adsorption isotherms at room temperature and pH 4.0. The maximum number of moles adsorbed was determined to be 7.26×10(-2) and 11.70×10(-2) mmol g(-1) for SPT and SPT(AMP), respectively. In order to evaluate the clay samples as adsorbents in dynamic system, a glass column was fulfilled with clay samples (1.0 g) and it was fed with 2.0×10(-2) mmol dm(-3) As(V) at pH 4.0. The energetic effects caused by metal cations adsorption were determined through calorimetric titrations. Thermodynamics indicated the existence of favorable conditions for such As(V)-nitrogen interactions.


Subject(s)
Arsenic/chemistry , Magnesium Silicates/chemistry , Adsorption , Calorimetry , Hydrogen-Ion Concentration , Ions/chemistry , Surface Properties , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...