Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 11: 163, 2020.
Article in English | MEDLINE | ID: mdl-32117174

ABSTRACT

Carotenoids in cyanobacteria play an important role in protecting against and in repairing damage against low level UV-B radiation. Here we use transcriptomics and metabolomic HPLC pigment analysis to compare carotenoid pathway regulation in the filamentous cyanobacterium Chlorogloeopsis fritschii PCC 6912 exposed to white light and to white light supplemented with low level UV-B. Under UV-B changes in carotenoid transcription regulation were found associated with carotenogenesis (carotenoid synthesis), photoprotection and carotenoid cleavage. Transcriptional regulation was reflected in corresponding pigment signatures. All carotenogenesis pathway genes from geranylgeranyl-diphosphate to lycopene were upregulated. There were significant increases in expression of gene homologs (crtW, crtR, cruF, and cruG) associated with routes to ketolation to produce significant increases in echinenone and canthaxanthin concentrations. There were gene homologs for four ß-carotene-ketolases (crtO and crtW) present but only one crtW was upregulated. Putative genes encoding enzymes (CruF, CrtR, and CruG) for the conversion of γ-carotene to myxol 2'-methylpentoside were upregulated. The hydroxylation pathway to nostaxanthin via zeaxanthin and caloxanthin (gene homologs for CrtR and CrtG) were not upregulated, reflected in the unchanged corresponding pigment concentrations in zeaxanthin, caloxanthin and nostaxanthin, Transcripts for the non-photochemical quenching related Orange-Carotenoid-Protein (OCP) and associated Fluoresence-Recovery-Protein (FRP) associated with photoprotection were upregulated, and one carotenoid binding Helical-Carotenoid-Protein (HCP) gene homolog was downregulated. Multiple copies of genes encoding putative apocarotenoid related carotenoid oxygenases responsible for carotenoid cleavage were identified, including an upregulated apo-ß-carotenal-oxygenase gene homologous to a retinal producing enzyme. Our study provides holistic insight into the photoregulatory processes that modulate the synthesis, photoprotection and cleavage of carotenoids in cyanobacterial cells exposed to low level UV-B. This is important to understanding how regulation of metabolism responds to a changing environment and how metabolism can be modulated for biotechnological purposes.

2.
Environ Microbiol ; 20(2): 588-601, 2018 02.
Article in English | MEDLINE | ID: mdl-29124852

ABSTRACT

During viral infection and growth limitation of the picoeukaryote Ostreococcus tauri, we examined the relationship between membrane permeability, oxidative stress and chlorophyll allomers (oxidation products). Chlorophyll allomers were measured in batch-cultures of O. tauri in parallel with maximum quantum efficiency of photosystem II photochemistry (Fv /Fm ), carotenoids, and reactive oxygen species and membrane permeability using fluorescent probes (CM-H2 DCFDA and SYTOX-Green). Viral infection led to mass cell lysis of the O. tauri cells within 48 h. The concentration of the allomer hydroxychlorophyll a peaked with a 16-fold increase (relative to chlorophyll-a) just after the major lysis event. In contrast, cell death due to growth limitation resulted in a twofold increase in allomer production, relative to chl-a. Two allomers were detected solely in association with O. tauri debris after viral lysis, and unlike other allomers were not observed before viral lysis, or during cell death due to growth limitation. Conversely, the component chl-aP276 was found in the highest concentrations relative to chl-a, in exponentially growing O. tauri. The components described have potential as indicators of mode of phytoplankton mortality, and of population growth.


Subject(s)
Chlorophyll/metabolism , Chlorophyta/metabolism , Cell Membrane Permeability , Chlorophyll/analogs & derivatives , Chlorophyll A/metabolism , Chlorophyta/virology , Oxidative Stress , Phytoplankton/metabolism
3.
Environ Sci Technol ; 51(18): 10449-10458, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28752764

ABSTRACT

We report novel in situ speciated observations of monoterpenes (α- and ß-pinene, myrcene, δ3-carene, ocimene, limonene) in seawater and air during three cruises in the Arctic and Atlantic Oceans, in/over generally oligotrophic waters. Oceanic concentrations of the individual monoterpenes ranged from below the detection limit of <1 pmol L-1 to 5 pmol L-1, with average concentrations of between 0.5 and 2.9 pmol L-1. After careful filtering for contamination, atmospheric mixing ratios varied from below the detection limit (<1 pptv) to 5 pptv, with averages of 0.05-5 pptv; these levels are up to 2 orders of magnitude lower than those reported previously. This could be at least partly due to sampling over waters with much lower biological activity than in previous studies. Unlike in previous studies, no clear relationships of the monoterpenes with biological variables were found. Based on our measured seawater concentrations and a global model simulation, we estimate total global marine monoterpene emissions of 0.16 Tg C yr-1, similar to a previous bottom-up estimate based on laboratory monoculture studies but 2 orders of magnitude lower than a previous top-down estimate of 29.5 Tg C yr-1.


Subject(s)
Monoterpenes/analysis , Arctic Regions , Atlantic Ocean , Bridged Bicyclo Compounds , Environmental Monitoring
4.
J Phycol ; 44(3): 670-83, 2008 Jun.
Article in English | MEDLINE | ID: mdl-27041425

ABSTRACT

The response of the coccolithophorid Emiliania huxleyi (Lohmann) W. H. Hay et H. Mohler to acute exposure to high photon flux densities (PFD) was examined in terms of PSII photoinhibition, photoprotection, and photorepair. The time and light dependencies of these processes were characterized as a function of the photoacclimation state of the alga. Low-light (LL) acclimated cells displayed a higher degree of photoinhibition, measured as decline in Fv /Fm , than high-light (HL) acclimated cells. However, HL cultures were more susceptible to photodamage but also more capable of compensating for it by performing a faster repair cycle. The relation between gross photoinhibition (observed in the presence of an inhibitor of repair) and PFD to which the algae were exposed deviated from linearity at high PFD, which calls into question the universality of current concepts of photoinhibition in mechanistic models. The light dependence of the de-epoxidation state (DPS) of the xanthophyll cycle (XC) pigments on the timescale of hours was the same in cells acclimated to LL and HL. However, HL cells were more efficient in realizing nonphotochemical quenching (NPQ) on short timescales, most likely due to a larger XC pool. LL cells displayed an increase in the PSII effective cross-section (σPSII ) as a result of photoinhibition, which was observed also in HL cells when net photoinhibition was induced by blocking the D1 repair cycle. The link between σPSII and photoinhibition suggests that the population of PSII reaction centers (RCIIs) of E. huxleyi shares a common antenna, according to a "lake" organization of the light-harvesting complex.

5.
Rapid Commun Mass Spectrom ; 18(23): 2934-8, 2004.
Article in English | MEDLINE | ID: mdl-15529415

ABSTRACT

Atmospheric pressure chemical ionisation reversed-phase high-performance liquid chromatography/multistage mass spectrometry has been used to study the mass spectral fragmentation of the cyanobacterial sheath pigment scytonemin and its reduced counterpart. The two pigments exhibit characteristic fragment ions in their MS2 and MS3 spectra that are of value in confirming the identification of the structures in extracts from natural environments.


Subject(s)
Chromatography, High Pressure Liquid/methods , Indoles/chemistry , Phenols/chemistry , Pigments, Biological/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Atmospheric Pressure , Cyanobacteria/chemistry , Indoles/analysis , Phenols/analysis , Pigments, Biological/analysis
6.
Microbiology (Reading) ; 150(Pt 8): 2555-2564, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15289552

ABSTRACT

Members of the Chlorobiaceae and Chloroflexaceae are unique among the phototrophic micro-organisms in having a remarkably rich chlorophyll pigment diversity. The physiological regulation of this diversity and its ecological implications are still enigmatic. The bacteriochlorophyll composition of the chlorobiaceae Prosthecochloris aestuarii strain CE 2404 and Chlorobium phaeobacteroides strain UdG 6030 was therefore studied by both HPLC with photodiode array (PDA) detection and liquid chromatography-mass spectrometry (LC-MS). These strains were grown in liquid cultures under green light (480-615 nm) at different light intensities (0.2-55.7 micromol photons m(-2) s(-1)), simulating the irradiance regime at different depths of the water column of deep lakes. The specific growth rates of Ptc. aestuarii under green light achieved a maximum of 0.06 h(-1) at light intensities exceeding 6 micromol photons m(-2) s(-1), lower than the maximum observed under white light (approx. 0.1 h(-1)). The maximal growth rates of Chl. phaeobacteroides under green light were slightly higher (0.07 h(-1)) than observed for Ptc. aestuarii and were achieved at 3.5 and 4.3 micromol photons m(-2) s(-1). LC-MS/MS analysis of pigment extracts revealed most (>90 %) BChl c homologues of Ptc. aestuarii to be esterified with farnesol. The homologues differed in mass by multiples of 14 Da, reflecting different alkyl subsituents at positions C-8 and C-12 on the tetrapyrrole macrocycle. The relative proportions of the individual homologues varied only slightly among different light intensities. The specific content of BChl c was maximal at 3-5 micromol photons m(-2) s(-1) [400+/-150 nmol BChl c (mg protein)(-1)]. In the case of Chl. phaeobacteroides, the specific content of BChl e was maximal at 4.3 micromol photons m(-2) s(-1) [115 nmol BChl e (mg protein)(-1)], and this species was characterized by high carotenoid (isorenieratene) contents. The major BChl e forms were esterified with a range of isoprenoid and straight-chain alcohols. The major isoprenoid alcohols comprised mainly farnesol and to a lesser extent geranylgeraniol. The straight-chain alcohols included C(15), C(15 : 1), C(16), C(16 : 1) and C(17). Interestingly, the proportion of straight alkyl chains over isoprenoid esterified side chains shifted markedly with increasing light intensity: the isoprenoid side chains dominated at low light intensities, while the straight-chain alkyl substituents dominated at higher light intensities. The authors propose that this phenomenon may be explained as a result of changing availability of reducing power, i.e. the highly reduced straight-chain alcohols have a higher biosynthetic demand for NADPH(2) than the polyunsaturated isoprenoid with the same number of carbon atoms.


Subject(s)
Bacteriochlorophylls/chemistry , Bacteriochlorophylls/radiation effects , Chlorobi/chemistry , Chlorobi/radiation effects , Chlorobium/chemistry , Chlorobium/radiation effects , Chromatography, High Pressure Liquid , Light , Molecular Structure , Spectrophotometry
7.
Arch Microbiol ; 180(6): 417-26, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14610639

ABSTRACT

The absorption and fluorescence properties of chlorosomes of the filamentous anoxygenic phototrophic bacterium Chloronema sp. strain UdG9001 were analyzed. The chlorosome antenna of Chloronema consists of bacteriochlorophyll (BChl) d and BChl c together with gamma-carotene as the main carotenoid. HPLC analysis combined with APCI LC-MS/MS showed that the chlorosomal BChls comprise a highly diverse array of homologues that differ in both the degree of alkylation of the macrocycle at C-8 and/or C-12 and the alcohol moiety esterified to the propionic acid group at C-17. BChl c and BChl d from Chloronema were mainly esterified with geranylgeraniol (33% of the total), heptadecanol (24%), octadecenol (19%), octadecanol (14%), and hexadecenol (9%). Despite this pigment heterogeneity, fluorescence emission of the chlorosomes showed a single peak centered at 765 nm upon excitation at wavelengths ranging from 710 to 740 nm. This single emission, assigned to BChl c, indicates an energy transfer from BChl d to BChl c within the same chlorosome. Likewise, incubation of chlorosomes under reducing conditions caused a weak increase in fluorescence emission, which indicates a small redox-dependent fluorescence. Finally, protein analysis of Chloronema chlorosomes using SDS-PAGE and MALDI-TOF-MS revealed the presence of a chlorosomal polypeptide with a molecular mass of 5.7 kDa, resembling the CsmA protein found in Chloroflexus aurantiacus and Chlorobium tepidum chlorosomes. Several minor polypeptides were also detected but not identified. These results indicate that, compared with other members of filamentous anoxygenic phototrophic bacteria and green sulfur bacteria, Chloronema possesses an antenna system with novel features that may be of interest for further investigations.


Subject(s)
Chloroflexi/chemistry , Chloroflexi/ultrastructure , Light-Harvesting Protein Complexes/analysis , Light-Harvesting Protein Complexes/chemistry , Bacterial Proteins/analysis , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Bacteriochlorophylls/analysis , Bacteriochlorophylls/chemistry , Carotenoids/analysis , Carotenoids/chemistry , Chromatography, High Pressure Liquid , Diterpenes/analysis , Spectrometry, Fluorescence , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrophotometry , Spectrum Analysis
8.
Rapid Commun Mass Spectrom ; 16(5): 453-61, 2002.
Article in English | MEDLINE | ID: mdl-11857731

ABSTRACT

Atmospheric pressure chemical ionisation liquid chromatography/mass spectrometry/mass spectrometry (APCI-LC/MS/MS) has been applied to the study of bacteriochlorophylls c, d, and e of phototrophic prokaryotes. Cultures of Chlorobiaceae containing bacteriochlorophyll c, d or e were examined using a high-resolution high-performance liquid chromatography (HPLC) method and APCI-LC/MS/MS employing post-column addition of formic acid. The results reveal complex distributions of bacteriochlorophyll homologues, with some closely eluting species giving isobaric protonated molecules. On-line LC/MS/MS studies reveal characteristic fragment ions for bacteriochlorophylls c, d, and e. Fragmentations involving loss of the extended alkyl substituents that are unique to bacteriochlorophylls c, d and e and their derivatives have been rationalised by studying the phaeophorbides and the results applied to the direct study of the bacteriochlorophylls.


Subject(s)
Bacteriochlorophylls/analysis , Chlorobi/chemistry , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry , Pigments, Biological/analysis , Species Specificity , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...