Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
J Am Chem Soc ; 146(19): 12925-12932, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691507

ABSTRACT

Technological breakthroughs in cryo-electron microscopy (cryo-EM) methods open new perspectives for highly detailed structural characterizations of extracellular vesicles (EVs) and synthetic liposome-protein assemblies. Structural characterizations of these vesicles in solution under a nearly native hydrated state are of great importance to decipher cell-to-cell communication and to improve EVs' application as markers in diagnosis and as drug carriers in disease therapy. However, difficulties in preparing holey carbon cryo-EM grids with low vesicle heterogeneities, at low concentration and with kinetic control of the chemical reactions or assembly processes, have limited cryo-EM use in the EV study. We report a straightforward membrane vesicle cryo-EM sample preparation method that assists in circumventing these limitations by using a free-standing DNA-affinity superlattice for covering holey carbon cryo-EM grids. Our approach uses DNA origami to self-assemble to a solution-stable and micrometer-sized ordered molecular template in which structure and functional properties can be rationally controlled. We engineered the template with cholesterol-binding sites to specifically trap membrane vesicles. The advantages of this DNA-cholesterol-affinity lattice (DCAL) include (1) local enrichment of artificial and biological vesicles at low concentration and (2) isolation of heterogeneous cell-derived membrane vesicles (exosomes) from a prepurified pellet of cell culture conditioned medium on the grid.


Subject(s)
Cryoelectron Microscopy , DNA , Cryoelectron Microscopy/methods , DNA/chemistry , Extracellular Vesicles/chemistry , Humans , Cholesterol/chemistry , Liposomes/chemistry
2.
Med Mycol ; 61(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37996394

ABSTRACT

Bronchoalveolar lavage fluid (BALF) is a standard respiratory sample for diagnosing invasive fungal diseases like Pneumocystis pneumonia (PCP) and invasive pulmonary aspergillosis (IPA). However, procedural variations exist across medical centers and wards. This study aimed to compare the diagnostic potential of BALF and bronchial aspirate (BA) obtained during bronchoscopy in 173 patients suspected of fungal infections. A prospective observational study was conducted from April 2020 to November 2021. BALF and BA were collected during bronchoscopy and subjected to direct examination, fungal culture, Aspergillus fumigatus qPCR (AfqPCR), and Pneumocystis jirovecii qPCR (PjqPCR). Galactomannan detection was performed on BALF. Patients were classified based on established European Organization for Research and Treatment of Cancer (EORTC) criteria. Out of 173 patients, 75 tested positive for at least one test in BA or BALF. For Aspergillus, proportion of positive AfqPCR (14.5% vs. 9.2%; P < 0.0001) and fungal loads (Cq of 31.3 vs. 32.8; P = 0.0018) were significantly higher in BA compared to BALF. For Pneumocystis, fungal loads by PjqPCR was also higher in BA compared to BALF (Cq of 34.2 vs. 35.7; P = 0.003). BA only detected A. fumigatus and P. jirovecii in 12 (42.9%) and 8 (19.5%) patients, respectively. BA obtained during a BAL procedure can be a suitable sample type for increased detection of P. jirovecii and A. fumigatus by qPCR. The use of BA in diagnostic algorithms requires further investigation in prospective studies.


Bronchoalveolar lavage fluid (BALF) vs. bronchial aspirate (BA) for fungal diagnosis in 173 patients suspected of invasive fungal infection: BA showed higher fungal loads than in BALF by qPCR for the detection of Aspergillus fumigatus and Pneumocystis jirovecii.


Subject(s)
Aspergillosis , Invasive Pulmonary Aspergillosis , Pneumocystis carinii , Pneumonia, Pneumocystis , Humans , Bronchoalveolar Lavage Fluid/microbiology , Pneumonia, Pneumocystis/diagnosis , Pneumonia, Pneumocystis/microbiology , Pneumonia, Pneumocystis/veterinary , Bronchoscopy/veterinary , Prospective Studies , Sensitivity and Specificity , Aspergillosis/veterinary , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/veterinary , Pneumocystis carinii/genetics , Mannans/analysis
3.
Adv Biol (Weinh) ; 7(3): e2200224, 2023 03.
Article in English | MEDLINE | ID: mdl-36509679

ABSTRACT

The ability to self-assemble DNA nanodevices with programmed structural dynamics that can sense and respond to the local environment can enable transformative applications in fields including mechanobiology and nanomedicine. The responsive function of biomolecules is often driven by alterations in conformational distributions mediated by highly sensitive interactions with the local environment. In this review, the current state-of-the-art in constructing complex DNA geometries with dynamic and mechanical properties to enable a molecular scale force measurement is first summarized. Next, an overview of engineering modular DNA devices that interact with cell surfaces is highlighted detailing examples of mechanosensitive proteins and the force-induced dynamic molecular interaction on the downstream biochemical signaling. Finally, the challenges and an outlook on this promising class of DNA devices acting as nanomachines to operate at a low piconewton range suitable for a majority of biological effects or as hybrid materials to achieve higher tension exertion required for other biological investigations, are discussed.


Subject(s)
Nanostructures , Nanotechnology , Nanostructures/chemistry , DNA/chemistry , Mechanical Phenomena , Nucleic Acid Conformation
4.
Med Mycol ; 60(10)2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36149324

ABSTRACT

Cryptococcal antigen (CrAg) is a capsule polysaccharide antigen that can be detected in the fluids of patients with cryptococcal infections. Cryptococcal Antigen Latex Agglutination System (CALAS), enzyme-linked immunosorbent assays (EIA), and lateral flow assay (LFA) are the main methods available. Two main commercial LFA kits are available: CryptoPS (Biosynex, Illkirch Graffenstaden, France) and CrAg LFA (IMMY, Inc. USA). In our lab, we prospectively used CryptoPS as a screening tool in serum for confirmed positive results with CALAS. We investigated the rigor of the CryptoPS test in serum in a multicentric evaluation over 3 years. To improve the specificity of CryptoPS in serum, we additionally implemented and evaluated a pretreatment protocol before CryptoPS testing. A total of 43 serum samples collected from 43 patients were investigated. We found that the CryptoPS assay is hampered by a high rate of false-positive results in serum with a high rate of CryptoPS-positive but CrAg LFA-negative and CALAS-negative sera in patients with no proof of Cryptococcus infection (n = 29). Using a simple pretreatment procedure (5 min incubation at 100°C and centrifugation) we were able to reverse false-positive results, suggesting that there could be interferent material present in the serum. Pretreatment also impacted the CryptoPS results (negative result) in two patients with the cryptococcal disease, one with isolated antigenemia and one with cryptococcal meningitis. Comparing the titers obtained with CALAS and CrAg LFA, we noticed that the titer obtained with CrAg LFA was almost 10-fold higher than those with CALAS. This study showed that Biosynex CryptoPS in serum could give false-positive results even in the absence of cryptococcal disease. These could be reduced by applying an easy pretreatment procedure to the serum before testing, with little but existing impact on the sensitivity.


Lateral flow assays are useful to detect the cryptococcal antigen in human fluids. We investigated CryptoPS-positive results and observed that true false-positive results occurred. The false-positive results can be reduced by applying an easy pretreatment procedure.


Subject(s)
Cryptococcosis , Cryptococcus , HIV Infections , Meningitis, Cryptococcal , Animals , Antigens, Fungal , Cryptococcosis/diagnosis , Cryptococcosis/veterinary , HIV Infections/veterinary , Meningitis, Cryptococcal/diagnosis , Meningitis, Cryptococcal/veterinary , Serum
5.
Microbiol Spectr ; 10(5): e0183322, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36094221

ABSTRACT

Candida auris is a recently described emerging pathogen in hospital settings. Five genetic clades have been delineated, with each clade being isolated from specific geographic regions. We here describe the first transmission between 2 patients (P0 and P1) of a clade I C. auris strain imported into our burn intensive care unit from the Middle East. The strains have been investigated with whole-genome sequencing, which validated the high similarity of the genomes between isolates from P0 and P1. We repeatedly screened the two patients and contact patients (i.e., other patients present in the same hospital ward at the time of the first positive sample from P0 or P1; n = 49; 268 tests) with fungal culture and a C. auris-specific quantitative PCR assay to assess transmission patterns. We observed that P1 developed C. auris colonization between 41 and 61 days after potential exposure to P0 contamination, despite three negative screening tests as recommended by our national authorities. This study illustrates that transmission of C. auris between patients can lead to long-term incubation times before the detection of colonization. The recommended screening strategy may not be optimal and should be improved in the light of our findings. IMPORTANCE While large outbreaks of C. auris in hospital settings have been described, few clear cases of direct transmission have been documented. We here investigated the transmission of C. auris clade I between two patients with a 41- to 61-day delay between exposure and the development of colonization. This may lead to changes in the recommendations concerning treatment of C. auris cases, as an incubation period of this length is one of the first to be reported.


Subject(s)
Candida , Candidiasis , Humans , Candida/genetics , Candidiasis/diagnosis , Candidiasis/epidemiology , Candida auris , Infectious Disease Incubation Period , Whole Genome Sequencing , Antifungal Agents/pharmacology , Microbial Sensitivity Tests
6.
BMC Infect Dis ; 21(1): 953, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34525963

ABSTRACT

BACKGROUND: Leishmaniases are regularly seen in non-endemic areas due to the increase of international travels. They include cutaneous leishmaniases (CL) and mucocutaneous (MC) caused by different Leishmania species, and visceral leishmaniases (VL) which present with non-specific symptoms. METHODS: We reviewed all consecutive leishmaniasis cases seen between September 2012 and May 2020. The diagnostic strategy included microscopy after May-Grünwald-Giemsa staining, a diagnostic quantitative PCR (qPCR) assay, and species identification based on sequencing of the cytochrome b gene. RESULTS: Eighty-nine patients had a definitive leishmaniasis diagnosis. Nine patients had VL with Leishmania infantum. Eighty patients had CL. Twelve patients acquired CL after trips in Latin America (7 Leishmania guyanensis, 2 Leishmania braziliensis, 2 Leishmania mexicana, and 1 Leishmania panamensis). Species could be identified in 63 of the 68 CLs mainly after travel in North Africa (59%) with Leishmania major (65%), Leishmania tropica/killicki (24%), and L. infantum (11%), or in West Sub-Saharan Africa (32%), all due to L. major. The median day between appearance of the lesions and diagnosis was 90 [range 60-127]. CONCLUSIONS: Our diagnostic strategy allows both positive diagnoses and species identifications. Travelers in West Sub-Saharan Africa and North Africa should be better aware of the risk of contracting leishmananiasis.


Subject(s)
Leishmania infantum , Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Leishmaniasis , France/epidemiology , Hospitals , Humans , Leishmania infantum/genetics , Leishmaniasis, Cutaneous/diagnosis , Leishmaniasis, Cutaneous/epidemiology , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/epidemiology , Retrospective Studies
7.
Melanoma Res ; 31(4): 338-351, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33965973

ABSTRACT

Cutaneous melanoma is the most lethal type of skin cancer. Early detection is crucial to improve the outcome of melanoma patients. The identification of noninvasive prognostic biomarkers for the follow-up of melanoma patients is still in demand for clinical use. We show here that exosomal melanotransferrin fulfills the biomarker characteristics required to meet this demand. Melanotransferrin is typically overexpressed in melanoma cells compared to other cell types - including cancer cells - and is efficiently sorted and secreted with nanovesicles, or so-called exosomes, due to its membrane-anchoring by a glycosylphosphatidylinositol. Melanotransferrin is exposed on the surface of exosomes and is accessible for antibody recognition. An ELISA was set up to quantify melanotransferrin after immobilization of nanovesicles through the exosomal constituent tetraspanins CD63. Melanotransferrin was detected using a low number of exosomes purified from melanoma cell line cultures, and melanotransferrin detection was abolished by phosphatidylinositol-specific phospholipase C treatment. This exosomal melanotransferrin ELISA was able to discriminate an equal number of assayed exosomes purified from two different melanoma cell lines (A-375 vs. SK-MEL-28). Moreover, plasma samples from patients with melanoma and noncancer disease were assayed using this ELISA and elevated levels of exosomal melanotransferrin were seen in the plasma of patients with melanoma. We propose that exosomal melanotransferrin should be assessed as a potential melanoma biomarker.


Subject(s)
Exosomes/genetics , Melanoma/genetics , Membrane Glycoproteins/metabolism , Skin Neoplasms/genetics , Animals , Humans , Melanoma/pathology , Mice , Skin Neoplasms/pathology
8.
Med Mycol ; 59(8): 845-848, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-33983431

ABSTRACT

Optimal sensitivity to detect low Pneumocystis loads is of importance to take individual and collective measures to avoid evolution towards Pneumocystis pneumonia and outbreaks in immunocompromised patients. This study compares two qPCR procedures, a new automated RTqPCR using the GeneLEAD VIII extractor/thermocycler (GLVIII; ∼2.2 h workflow) and a previously validated in-house qPCR assays (IH; ∼5 h workflow) both targeting mtSSU and mtLSU for detecting P. jirovecii in 213 respiratory samples. GLVIII was found to be more sensitive than IH, detecting eight more specimens. Bland-Altman analysis between the two procedures showed a Cq bias of 1.17 ± 0.07 in favor of GLVIII. LAY SUMMARY: The fungus Pneumocystis needs to be detected early in respiratory samples to prevent pneumonia in immunocompromised hosts. We evaluated a new commercial RTqPCR on 213 respiratory samples to detect Pneumocystis and found it more sensitive and faster than our routine sensitive in-house qPCR assay.


Subject(s)
Pneumocystis carinii/isolation & purification , Pneumonia, Pneumocystis/diagnosis , Real-Time Polymerase Chain Reaction/standards , Respiratory System/microbiology , Reverse Transcriptase Polymerase Chain Reaction/standards , Adult , Aged , Female , Humans , Male , Middle Aged , Opportunistic Infections/microbiology , Pneumocystis carinii/genetics , Pneumonia, Pneumocystis/microbiology , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Sensitivity and Specificity
9.
Chem Commun (Camb) ; 57(34): 4130-4133, 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33908492

ABSTRACT

Inspired by the automated synthesis of DNA on a solid support, the electron-rich dialkoxynaphthalene (DAN) donor and the electron-deficient naphthalene-tetracarboxylic diimide (NDI) acceptor, amphiphilic foldamers have been synthesised from their respective phosphoramidite building blocks. The folding of the phosphodiester-linked hexamer (DAN-NDI)3 revealed the formation of regular supramolecular nanotubes in water resulting from the self-assembly of multiple hexamers stabilized by donor/acceptor interactions and the solvophobic effect.

10.
ACS Nano ; 15(3): 4186-4196, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33586425

ABSTRACT

Technological breakthroughs in electron microscopy (EM) have made it possible to solve structures of biological macromolecular complexes and to raise novel challenges, specifically related to sample preparation and heterogeneous macromolecular assemblies such as DNA-protein, protein-protein, and membrane protein assemblies. Here, we built a V-shaped DNA origami as a scaffolding molecular system to template proteins at user-defined positions in space. This template positions macromolecular assemblies of various sizes, juxtaposes combinations of biomolecules into complex arrangements, isolates biomolecules in their active state, and stabilizes membrane proteins in solution. In addition, the design can be engineered to tune DNA mechanical properties by exerting a controlled piconewton (pN) force on the molecular system and thus adapted to characterize mechanosensitive proteins. The binding site can also be specifically customized to accommodate the protein of interest, either interacting spontaneously with DNA or through directed chemical conjugation, increasing the range of potential targets for single-particle EM investigation. We assessed the applicability for five different proteins. Finally, as a proof of principle, we used RNAP protein to validate the approach and to explore the compatibility of the template with cryo-EM sample preparation.


Subject(s)
DNA , Single Molecule Imaging , Cryoelectron Microscopy , Macromolecular Substances , Microscopy, Electron
11.
J Fungi (Basel) ; 6(4)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271743

ABSTRACT

Pneumocystis jirovecii pneumonia is a difficult invasive infection to diagnose. Apart from microscopy of respiratory specimens, two diagnostic tests are increasingly used including real-time quantitative PCR (qPCR) of respiratory specimens, mainly in bronchoalveolar lavage fluids (BAL), and serum ß-1,3-d-glucan (BDG). It is still unclear how these two biomarkers can be used and interpreted in various patient populations. Here we analyzed retrospectively and multicentrically the correlation between BAL qPCR and serum BDG in various patient population, including mainly non-HIV patients. It appeared that a good correlation can be obtained in HIV patients and solid organ transplant recipients but no correlation can be observed in patients with hematologic malignancies, solid cancer, and systemic diseases. This observation reinforces recent data suggesting that BDG is not the best marker of PCP in non-HIV patients, with potential false positives due to other IFI or bacterial infections and false-negatives due to low fungal load and low BDG release.

12.
Biomacromolecules ; 20(12): 4522-4534, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31710810

ABSTRACT

A comprehensive understanding of the mechanism by which type I collagen (Col) interacts with hydroxyapatite nanoparticles (Hap NPs) in aqueous solutions is a pivotal step for guiding the design of biologically relevant nanocomposites with controlled hierarchical structure. In this paper we use a variety of Hap NPs differing by their shape (rod vs platelet) and their size (∼30 vs ∼130 nm) and investigate their mechanism(s) of interaction with collagen. The addition of collagen to the Hap suspensions induces different effects that strongly depend on the nanoparticle type. Interestingly, the use of small rods, typically with ∼30 nm of length (R30), leads to the formation of assembled collagen fibrils decorated with Hap nanocrystals which, in turn, self-assemble progressively to form larger fibrillar Hap-Col composite. The crystals decorating collagen provide "intrinsic" negative charges to the fibrillar objects that allow their incorporation in three-dimensional structure using layer-by-layer (LbL) assembly. This offers a straightforward way to construct a collagen-based hybrid material with well-defined hierarchy under near-physiological conditions. In situ, QCM-D monitoring revealed the buildup of soft and highly hydrated hybrid (PAH/R30-Col)n multilayers for which the mechanism of growth was very different from that observed for polyelectrolytes and nanoparticles without collagen (PAH/R30). The LbL assembly of crystal-decorated collagen yields a hierarchical nanostructured film whose thickness and roughness can be modulated by the addition of salt and incorporate fibrillar objects of about 400 nm in width and few micrometers in length, as probed by AFM. The approach described in this work provides a relevant way to better control the (supra)molecular assembly of Col and Hap NPs with the perspective of developing hierarchical Hap-Col nanocomposites with tuned properties for various biomedical applications.


Subject(s)
Collagen/chemistry , Durapatite/chemistry , Nanocomposites/chemistry , Nanoparticles/chemistry
13.
Small ; 14(18): e1703357, 2018 05.
Article in English | MEDLINE | ID: mdl-29611258

ABSTRACT

The controlled functionalization of surfaces with proteins is crucial for many analytical methods in life science research and biomedical applications. Here, a coating for silica-based surfaces is established which enables stable and selective immobilization of proteins with controlled orientation and tunable surface density. The coating is reusable, retains functionality upon long-term storage in air, and is applicable to surfaces of complex geometry. The protein anchoring method is validated on planar surfaces, and then a method is developed to measure the anchoring process in real time using silicon nitride solid-state nanopores. For surface attachment, polyhistidine tags that are site specifically introduced into recombinant proteins are exploited, and the yeast nucleoporin Nsp1 is used as model protein. Contrary to the commonly used covalent thiol chemistry, the anchoring of proteins via polyhistidine tag is reversible, permitting to take proteins off and replace them by other ones. Such switching in real time in experiments on individual nanopores is monitored using ion conductivity. Finally, it is demonstrated that silica and gold surfaces can be orthogonally functionalized to accommodate polyhistidine-tagged proteins on silica but prevent protein binding to gold, which extends the applicability of this surface functionalization method to even more complex sensor devices.


Subject(s)
Biosensing Techniques/methods , Proteins/chemistry , Nanopores , Protein Binding
14.
Nanoscale ; 9(2): 673-683, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27942672

ABSTRACT

Here we investigate the energy transfer rates of a Förster resonance energy transfer (FRET) pair positioned in close proximity to a 5 nm gold nanoparticle (AuNP) on a DNA origami construct. We study the distance dependence of the FRET rate by varying the location of the donor molecule, D, relative to the AuNP while maintaining a fixed location of the acceptor molecule, A. The presence of the AuNP induces an alteration in the spontaneous emission of the donor (including radiative and non-radiative rates) which is strongly dependent on the distance between the donor and AuNP surface. Simultaneously, the energy transfer rates are enhanced at shorter D-A (and D-AuNP) distances. Overall, in addition to the direct influence of the acceptor and AuNP on the donor decay there is also a significant increase in decay rate not explained by the sum of the two interactions. This leads to enhanced energy transfer between donor and acceptor in the presence of a 5 nm AuNP. We also demonstrate that the transfer rate in the three "particle" geometry (D + A + AuNP) depends approximately linearly on the transfer rate in the donor-AuNP system, suggesting the possibility to control FRET process with electric field induced by 5 nm AuNPs close to the donor fluorophore. It is concluded that DNA origami is a very versatile platform for studying interactions between molecules and plasmonic nanoparticles in general and FRET enhancement in particular.


Subject(s)
DNA/chemistry , Fluorescence Resonance Energy Transfer , Gold , Metal Nanoparticles , Fluorescent Dyes
15.
Langmuir ; 30(14): 4066-77, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24635492

ABSTRACT

We investigated the mechanism of enzyme immobilization on silanized surfaces through coupling agents (cross-linkers) in order to understand the role of these molecules on interfacial processes and their effect on catalytic activity. To this end, we used a model multimeric enzyme (G6PDH) and several cross-linking molecules with different chemical properties, including the nature of the end-group (-NCO, -NCS, -CHO), the connecting chain (aliphatic vs aromatic), and geometrical constraints (meta vs para-disubstituted aromatics). There did not seem to be radical differences in the mechanism of enzyme adsorption according to the linker used as judged from QCM-D, except that in the case of DIC (1,4-phenylene diisocyanate) the adsorption occurred more rapidly. In contrast, the nature of the cross-linker exerted a strong influence on the amount of enzyme immobilized as estimated from XPS, and more unexpectedly on the stability of the underlying silane layer. DIC, PDC (1,4-phenylene diisothiocyanate), or GA (glutaraldehyde) allowed successful enzyme immobilization. When the geometry of the linker was changed from 1,4-phenylene diisothiocyanate to 1,3-phenylene diisothiocyanate (MDC), the silane layer was subjected to degradation, upon enzyme adsorption, and the amount of immobilized molecules was significantly lowered. TE (terephtalaldehyde) and direct enzyme deposition without cross-linker were similar to MDC. The organization of immobilized enzymes also depended on the immobilization procedure, as different degrees of aggregation were observed by AFM. A correlation between the size of the aggregates and the catalytic properties of the enzyme was established, suggesting that aggregation may enhance the thermostability of the multimeric enzyme, probably through a compaction of the 3D structure.


Subject(s)
Enzymes, Immobilized/metabolism , Glucosephosphate Dehydrogenase/metabolism , Silanes/metabolism , Biocatalysis , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/metabolism , Enzymes, Immobilized/chemistry , Glucosephosphate Dehydrogenase/chemistry , Particle Size , Silanes/chemistry , Surface Properties
16.
Enzyme Microb Technol ; 52(6-7): 336-43, 2013 May 10.
Article in English | MEDLINE | ID: mdl-23608502

ABSTRACT

In this work, we investigate the influence of crosslinkers on the operational and heat stability of immobilized enzymes on a silanized silicon surface. To this end, glucose-6-phosphate dehydrogenase (G6PDH), a model multimeric enzyme, was attached through bifunctional crosslinkers able to bind covalently the -NH2 in the silane layer and of amine residues in the enzyme. Five bifunctional crosslinkers in the form of "X-spacer-X" were used, differing by the reactive functional groups (X=aldehyde: -CHO, isothiocyanate: -NCS, isocyanate: -NCO), by the nature of the spacer chain (aromatic or aliphatic) or by the geometry (bifunctional groups positioned in meta- or para- on an aromatic ring). A thermostability enhancement has been obtained for enzymes immobilized using 1,4-phenylene diisothiocyanate (PDC) and 1,4-phenylene diisocyanate (DIC). Moreover, using the latter crosslinker, activity was the mostly preserved upon successive uses, thus giving the best operational stability achieved. Changing the geometry of the cross-linker, i.e., 1,4- as compared to 1,3-phenylene diisothiocyanate (PDC and MDC, respectively), has a crucial effect on operational and thermal stabilities. Indeed, among all used crosslinkers, the most important loss was observed for MDC (residual activity after 6 times use is ~16%). Using dialdehyde crosslinkers: glutaraldehyde (GA) and terephtalaldehyde (TE), activity was significantly less well preserved than with DIC and PDC (for GA and TE, a loss of about 50% at 30°C against no loss for PDC and DIC). These effects can be explained by a multipoint attachment model, in which a higher number of anchoring points stabilizes the three-dimensional structure and especially the binding of the two subunits in the active dimer, at the expense of a greater rigidity which is detrimental to the absolute activity. The differences observed with the crosslinkers are mainly due to steric hindrance at the interface which seems to be greatly influenced by the structure and the reactivity of the linkers.


Subject(s)
Cross-Linking Reagents/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Glucosephosphate Dehydrogenase/chemistry , Glucosephosphate Dehydrogenase/metabolism , Silanes/chemistry , Silicon/chemistry , Catalysis , Cross-Linking Reagents/classification , Cross-Linking Reagents/metabolism , Enzyme Stability , Models, Molecular , Protein Multimerization , Temperature , Thermodynamics
17.
Langmuir ; 28(11): 5116-24, 2012 Mar 20.
Article in English | MEDLINE | ID: mdl-22353040

ABSTRACT

We investigate the mechanism of self-assembly of fatty acids (FA) and methyl oleate on an Al oxy-hydroxide surface with a view to deciphering the role and nature of interfacial processes (adsorption, chemical binding, molecular organization, etc.). For this purpose, we focus on parameters related to intrinsic properties of molecules, namely the level of unsaturation and the nature of the head group (carboxylic acid or ester). After the FA adsorption, the presence of coordinative bonded carboxylate species on the Al oxy-hydroxide surface is demonstrated by means of PM-IRRAS analysis. We observe that contact of methyl oleate with the surface leads to its chemical transformation through a saponification reaction. As a consequence, it binds to the surface in a manner similar to that for fatty acids. Through an innovative mode of atomic force microscopy (AFM), the organization of the adsorbed molecules is demonstrated. Our results reveal the existence of highly ordered nanostructures guided by the FA self-assembly. The size of these nanostructures was determined with accuracy, suggesting that it exceeds one FA monolayer. By contrast, no organization was observed with methyl oleate.


Subject(s)
Aluminum/chemistry , Fatty Acids/chemistry , Nanostructures , Hydroxylation , Microscopy, Atomic Force , Spectrophotometry, Infrared
18.
Langmuir ; 28(1): 656-65, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-22107153

ABSTRACT

In this work the mechanism of (3-aminopropyl)triethoxysilane (APTES) interaction with silicon surfaces is investigated at the molecular level. We studied the influence of experimental parameters such as time, temperature, and concentration on the quality of the APTES layer in terms of chemical properties, morphology, and stability in aqueous medium. This was achieved using a highly sensitive IR mode recently developed, grazing angle attenuated total reflection (GA-ATR). This technique provides structural information on the formed APTES layer. The topography of this layer was investigated by atomic force microscopy in aqueous medium. The hydrophilicity was also studied using contact angle measurement. Combining these techniques enables discussion of the mechanism of silane grafting. Considerable differences were observed depending on the reaction temperature, room temperature or 90 °C. The data suggest the presence of two adsorption sites with different affinities on the oxidized silicon layer. This also allows the optimal parameters to be established to obtain an ordered and stable silane layer. The adsorption of proteins on the APTES layer was achieved and monitored using in situ quartz crystal microbalance with dissipation monitoring and ex situ GA-ATR analyses.


Subject(s)
Proteins/chemistry , Silanes/chemistry , Adsorption , Microscopy, Atomic Force , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...